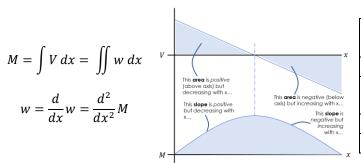


MECHANICS OF MATERIALS: NORMAL & SHEAR STRESS

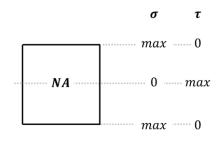
Normal Stress Caused by Bending:

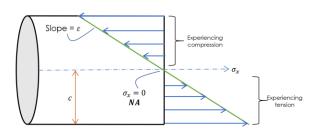
Recall shear and moment calculation and graphing techniques:



Load (w)	Shear (V)	Moment
		(M)
0	0	0
-w (constant)	wx (linear)	wx^2
		(parabolic)
-wx (linear)	wx^2 (parabolic)	wx^3
$-wx^2$ (parabolic)	wx^3	wx^4

• The Neutral Axis is the axis at which a member in bending experiences no normal stress:





 When bending, we observe how stress varies as a point moves away from the Neutral Axis.

$$\varepsilon = -\frac{y}{c} \cdot \varepsilon_{max} \quad \text{such that } \sigma_x = E\left(-\frac{y}{c}\right) \cdot \varepsilon_{max} \quad \text{and} \quad \sigma_x = -\frac{y}{c} \cdot \sigma_{max}$$

$$I = \int y^2 dA = \frac{Mc}{\sigma_{max}} \quad \text{or} \quad \sigma_x = -\frac{My}{I} \quad \text{for any } y \quad \text{because for a positive y point, the beam experiences compression}$$

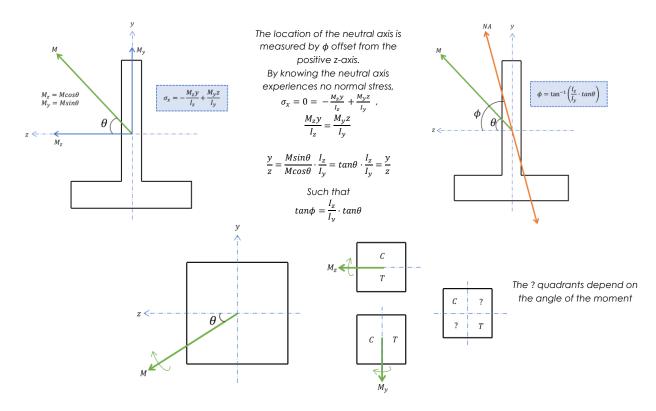
 The Parallel Axis Theorem is often used for objects that are not strictly rectangular or circular, but rather are comprised of several shapes:

$$I_i = I' + A_i d_i^2$$

Rectangle	$I_{rectangle} = \frac{1}{12}bh^3$
Circle	$I_{circle} = \frac{1}{4}\pi R^4$
Triangle	$I_{triangle} = \frac{1}{36}bh^3$
Semi-circle	$I_{semicircle} = \frac{1}{8}\pi R^4$
	-

b is in the direction parallel (II) to the NA h is in the direction perpendicular (\perp) to the NA

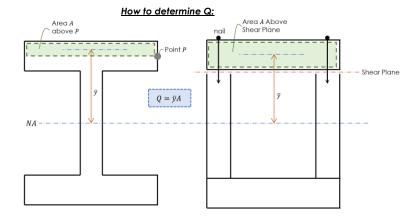
 Unsymmetrical bending due to moments at angles requires the moment vector be decomposed:



Shear Stress Caused By Shear Force:

- There are two directions in which shear force acts: longitudinal (along the length of the beam) and transverse (on cut plane)

 Distance from NA to the length of the beam.
 - 1. Horizontal shear (longitudinal): $\Delta H = \frac{VQ}{I} \Delta x$
 - 2. Transverse shear: $au_{avg} = rac{v\varrho}{lt}$ and $au_{max} = 1.5 \cdot rac{v_{max}}{A}$
- Shear flow (shear force per unit length): $q = \frac{\Delta H}{\Delta x} = \frac{VQ}{I}$



\bar{y}	Distance from NA to the	
	centroid of A	
	Area above the point or above	
Α	the Shear Plane (opposite side	
	of NA)	
I	Moment of inertia of entire	
	object (independent of A or \bar{y})	
V	Transverse force applied	
t	Thickness of the object at the	
	point observed or Shear Plane	