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ABSTRACT

Surface temperatures have been observed in East Africa for more than 100 yr, but heretofore have not

been subject to a rigorous climate analysis. To pursue this goal monthly averages of maximum (TMax),

minimum (TMin), and mean (TMean) temperatures were obtained for Kenya and Tanzania from several

sources. After the data were organized into time series for specific sites (60 in Kenya and 58 in Tanzania), the

series were adjusted for break points and merged into individual gridcell squares of 1.258, 2.58, and 5.08.

Results for the most data-rich 58 cell, which includes Nairobi, Mount Kilimanjaro, and Mount Kenya,

indicate that since 1905, and even recently, the trend of TMax is not significantly different from zero. How-

ever, TMin results suggest an accelerating temperature rise.

Uncertainty estimates indicate that the trend of the difference time series (TMax 2 TMin) is significantly less

than zero for 1946–2004, the period with the highest density of observations. This trend difference continues

in the most recent period (1979–2004), in contrast with findings in recent periods for global datasets, which

generally have sparse coverage of East Africa.

The differences between TMax and TMin trends, especially recently, may reflect a response to complex

changes in the boundary layer dynamics; TMax represents the significantly greater daytime vertical connec-

tion to the deep atmosphere, whereas TMin often represents only a shallow layer whose temperature is more

dependent on the turbulent state than on the temperature aloft.

Because the turbulent state in the stable boundary layer is highly dependent on local land use and perhaps

locally produced aerosols, the significant human development of the surface may be responsible for the rising

TMin while having little impact on TMax in East Africa. This indicates that time series of TMax and TMin should

become separate variables in the study of long-term changes.

1. Introduction

Because humanity lives on and obtains its sustenance

from the surface of the earth, the near-surface air tem-

perature is often viewed as a critical response variable

associated with changes in forcing of the climate system.

Several major efforts to create precise, long-term time

series of near-surface air temperatures (or simply sur-

face temperatures) have thus been carried out (Peterson

and Vose 1997; Hansen et al. 1999; Brohan et al. 2006).

However, problems are apparent in understanding the

precision inherent in such compilations, especially when

the time span for documenting changes increases to

cover many decades.

Gridded global datasets of surface temperature may

misrepresent trends in undersampled and poorly ob-

served grid boxes (e.g., Christy et al. 2006). Under-

sampling occurs when observations are scarce or because

much useful information has not yet been digitized. This

is true of much of the African continent, and in partic-

ular of East Africa. Although a considerable amount

of data are available for parts of the East African

countries of Kenya and Tanzania, the available records

are widely scattered, many records have not heretofore

been converted to digital form, and the quality of the

data is often poor, that is, either missing, illegible,

or outside the range of possible values. These factors

have prevented the full complement of available East

African data from entering the databases of global

datasets.

The goal of the research reported here is to contribute

to a more thorough understanding of the twentieth-

century climate of East Africa by constructing regional

time series of temperatures from as many observations
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as possible for the period of 1905–2004. For climate

studies this region is useful because at some locations

observations began before 1900. The 58 grid cell with its

southwest corner at 58S, 308E, and covering parts of

Kenya and Tanzania, is of special interest. Not only does

it contain major population centers of the two countries,

but it also contains Mount Kilimanjaro and Mount

Kenya. The shrinkage of the ice fields of these two

mountains has been well documented (e.g., Thompson

et al. 2002).

This paper begins by describing where the datasets

were found and how they were organized to produce

basic, unaltered time series (often more than one) for

each station. Next, the paper describes how multiple se-

ries at a site were reduced to a single series, how inhomo-

geneities were detected and removed, how the resulting

site-specific series were merged to create regional prod-

ucts, and how error estimates were created. The contin-

ued trend difference between maximum and minimum

is contrasted with the few global datasets (e.g., Vose

et al. 2005) that track minimum and maximum tem-

peratures separately. Finally, hypotheses are offered

that may explain notable features of the data. Following

Pielke et al. (2007), we discuss the hypothesis that at-

tempting to document changes in climate resulting from

changes in forcings in the deep atmosphere (such as

from enhanced greenhouse emissions) is better done by

monitoring daily maximum temperatures than by daily

means or minima.

2. Data sources

Table 1 lists the five sources of data that are used in

this investigation, described below. The considered data

quantities are the monthly means of the daily maximum

and minimum temperatures (hereafter TMax and TMin,

respectively). Two forms of averages of TMax and TMin

were also considered, called TAvg and TMean. The slight

difference between them is discussed in section 5. After

an extensive search for sources of data for Kenya and

Tanzania, the following were found.

a. British East Africa summaries

From 1904 to 1974, the British East Africa (BEA)

Meteorological Service, later the East African Meteo-

rological Department, published annual summaries of

monthly TMax and TMin for the temperature stations of

Kenya. Beginning in the 1920s, after the Tanzanian main-

land passed from German to British control, these sum-

maries included Tanzania. Paper and/or electronic im-

ages of the annual summaries were obtained from the

National Climatic Data Center (NCDC) and the U.K.

Meteorological Library, and then were manually digi-

tized at the University of Alabama in Huntsville (UAH).

Annual summaries were available for most years since

1946, but many could not be located for the first half of

the twentieth century. BEA data constitute the backbone

of this investigation for years prior to 1974.

b. Global Historical Climate Network

NCDC has collected and digitized monthly average

TMax and TMin values for more than 5000 temperatures

stations around the world from a variety of sources for

the Global Historical Climate Network (GHCN) project

(Peterson and Vose 1997; Peterson et al. 1998). Time

series of some of these stations were labeled ‘‘GHCN’’ in

the archive. Others, identified as ‘‘Griffiths’’ (Table 1),

were the files personally acquired through the efforts of

Peterson and Griffiths (1996, 1997) in a notable data

rescue effort focused on the earliest observations

throughout Africa.

c. World Weather Records

Monthly values of TMean for Kenya and Tanzania

were both published in the decadal World Weather

Records (WWR) volumes and manually keyed at UAH,

beginning with the 1931–40 edition (U.S. Department of

Commerce 1949, 1959, 1967, 1985; Steurer 1993; Owen

1999). Data in the 1991–2000 edition included TMax and

TMin values for a few stations, and these were also keyed

for use. In the 1981–90 edition of WWR, the data for

1971–80 for three stations were republished along with

their 1981–90 values. Over 50% of the republished

values differed from the original values by at least 0.18C.

In the absence of knowing which version was better,

both values were included among the samples to be

examined by the best-guess algorithm (see section 4a).

TABLE 1. Sources of data used in this study. Spans of years in-

dicate only the first observation and the last observation of at least

one station. Significant periods of observations are missing in most

spans for many stations.

Monthly Kenya

No. of

stations TMax TMin TMean Period

NCAR 25 X X X 1979–2004

British East Africa 77 X X X 1904–1974

GHCN 7 X X X 1911–2004

World Weather Records 15 X 1931–2000

Griffiths 3 X X X 1893–1962

NASA GISS 8 X 1895–2004

Monthly Tanzania

NCAR 22 X X X 1979–2004

British East Africa 54 X X X 1922–74

GHCN 11 X X X 1875–2004

World Weather Records 9 X 1931–2000

Griffiths 2 X X X 1875–1962

NASA GISS 9 X 1892–2004
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d. National Center for Atmospheric Research

The National Center for Atmospheric Research

(NCAR) maintains a digital archive of monthly summa-

ries of worldwide stations beginning in 1979 based on

information received electronically from synoptic re-

ports. The ancillary data associated with the summaries

includes the number of days per month on which ob-

servations were reported for each site. Both TMax and

TMin values from this source were accepted when a

minimum of 16 days was reported.

From January 1979 to June 1989 NCAR archived

these data in one format, and from January 1987 to the

present they were archived in another format. Com-

parison of the monthly values in the overlapping period

revealed occasional slight differences, usually of 0.18–

0.28C. When differences were found, the mean of the

two representative values was calculated.

e. NASA Goddard Institute for Space Studies

The climate research group at the National Aero-

nautics and Space Administration (NASA) Goddard

Institute for Space Studies (GISS) provides worldwide

data of monthly TMean values (Hansen et al. 1999). The

data used for this study were selected from the ‘‘raw

GHCN data’’ files, but often differed from the data ac-

cessed directly from NCDC and labeled GHCN. The

main differences between the two were monthly values

listed as missing in one and available in the other. GISS

often archived time series from more than one source

(e.g., Tabora, Tanzania, was represented by five sources

that appear to be multiple copies of WWR, but with

varying missing months). Usually the source for GISS

was either GHCN or WWR, but even then differences

with the original sources appeared. Where differences

from either GHCN or WWR were apparent, the GISS

values were included as a separate source for TMean to

be examined by the best-guess algorithm.

3. Data organization

The data from all sources were converted to a stan-

dard format and grouped by station name (the first sig-

nificant organizational task). An attempt was then made

to identify the particular instrument site associated with

each time series from each source. In the case of the

BEA series, monthly summary records were clearly site

specific, with a given station name always referring to a

unique location. In contrast, most non-BEA sources

were multiple sites composited into long time series

under a single name. Thus, the second significant orga-

nizational task was to examine each non-BEA time se-

ries and identify which portions were associated with a

specific BEA instrument and/or site. This step led to a

few series, initially associated with single station names,

to be subdivided into as many as four segments, each

corresponding to a unique BEA site.

A separate file was then created for each BEA site.

For example, the BEA records for Mombasa, Kenya,

were clearly identified as being from four locations through

time. Thus, the Mombasa data were divided into four

files with unique names, with each file listing all of the

source data for that site. By organizing the data in this

fashion, many of the potential biases introduced by

station moves could be readily accounted for in our

merging method (section 4) simply because the different

thermometer shelter sites were treated as different sta-

tions even though the data as they were initially received

were sometimes attributed to a single site.

The methodology described above, though thorough

by many standards, very likely did not capture all station

moves or other inhomogeneities and thus did not remove

all discontinuities. Detecting these additional changes

was not possible unless they were found in the break-

point detection scheme (see section 4b).

Files resulting from the reorganization were not ac-

cepted unless at least 24 months of observations were

available. Meeting the criteria were 60 separate collec-

tions of time series for Kenya and 58 for Tanzania.

4. Data-processing methods

Methods were applied to (a) reduce multiple time

series for a single site to a single series, (b) identify and

remove significant break points, and (c) merge time

series for several sites in a region to a single time series

representative of the region.

a. Best-guess algorithm

Using the data contributed by each source for a station

(e.g., BEA, WWR, GHCN, etc.), a single ‘‘best-guess’’

value for each month was determined. Two simple sta-

tistics were computed to assist in this process. The first

check was a simple calculation of the monthly anomaly

relative to the monthly mean annual cycle for all time

series at each station; call this mean annual cycle TMean.

Also calculated was the standard deviation of the spread

for each of the 12 months using all of the unadjusted

times series for each station; call this TMean.

Data from the various sources tended to be in tight

clusters. A cluster was defined as values within 0.038C of

each other. The average value of the cluster with the

largest number of entries was calculated and tentatively

accepted. In the case of competing clusters of the same

number of entries, the cluster’s average that was closest

to the median of the mean annual cycle for the given
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month was tentatively taken. While this has the tendency

to reduce variability, the number of times this procedure

was necessary was small because most stations were

represented by only one or two time series, where in the

latter case the two were essentially identical.

The departure of the tentatively selected value from

Tcycle was then compared with the TSDcycle, and if the

resulting z score exceeded 1.96, then the value was

discarded. While this procedure may eliminate a few

true extremes, note that TSDcycle was calculated from

unadjusted data and thus represented a wider range

than would be produced by the actual 95% confidence

interval (CI) for a climate region with low natural in-

terannual variability and accurate data. Very few values

were eliminated this way. This ultimately resulted in a

single TMax, TMin, and TMean series for each station.

b. Break-point detection

After the best-guess algorithm (BGA) generated a

single time series for each of the 118 ‘‘stations,’’ the data

were examined for indications of break points, resulting

from, for example, unrecorded station moves or other

alterations. The goal was to discover the significant tem-

perature shifts in each time series under the assumption

that the remaining, undetected spurious shifts were es-

sentially random in sign and small in magnitude. After

the series were adjusted for the break points, it was

assumed that each station’s time series was an essen-

tially ‘‘homogeneous segment’’ for merging into a re-

gional time series (see Christy et al. 2006).

Break points were detected by applying a statistical

test directly to each time series of anomaly observa-

tions. Using the method of Haimberger (2007), which is

similar to that of Christy et al. (2006), the most conse-

quential break points were identified.

The test statistic is

tk 5 Df[m�k (D)�mk(2D)]2

1 [m 1
k (D)�mk(2D)]2g/sk(2D),

where k is the target month being examined for a break

point, D is the length in months of a period before and a

period after k, mk(2D) is the mean, sk(2D) is the stan-

dard deviation of the target values over both periods,

m�k (D) is the mean of the target values over the period

before k, and mk
1(D) is the mean of the target values

over the period after k. Initially, D was chosen to be 36

months, but it was shortened to 24 months and then 12

months, as the endpoints of the series were approached.

This process produced a time series of t values. Break

points were assumed to occur where maximum values of

t exceeded a specified threshold H. The break points

marked the points where the time series should be

separated into ‘‘homogeneous segments.’’

The results of this paper are for time series parsed for

thresholds of H 5 ‘ (i.e., no break points, and thus

unadjusted data), 20, and 12. The value of 20 corre-

sponds to a significance z score of about 4.5 (a tem-

perature shift of about 18C), and that of 12 corresponds

to a z score of about 3 (a temperature shift of about

0.68C). These three thresholds were used to help quantify

the ‘‘parametric’’ uncertainty inherent in this dataset con-

struction process.

Because the data availability for East Africa is in-

consistent over the twentieth century, we report results

of time series that begin in 1905, 1946, and 1979, with

each ending in 2004. Data before 1905 turned out to be

too sparse to be regionally meaningful. Data after 1945

represent the highest density of observations, and data

after 1978 account for a period of significant population

growth and urban migration in East Africa. Break-point

detection was carried out separately for each starting

date because the number and location of break points

was a function of this date.

c. Merging methodology and gridcell averaging

Kenya and Tanzania can be essentially covered by a

box having its southwest corner located at 108S, 308E,

and its northeast corner at 58N, 458E. This box can be

conveniently subdivided into nine nonoverlapping 58

cells. Each of these was subdivided into four 2.58 cells

(36 in all), and each of these in turn was subdivided into

four 1.258 cells (144 in all). These subdivisions provided

the opportunity to examine regional trends at three

levels of resolution—58, 2.58, and 1.258.

After the individual station time series were adjusted

according to the break-point methodology described

above, they were merged into regional series, where each

cell was taken to be a region. Each cell was associated

with a circle of influence centered on the center point of

the cell but that extended beyond the boundaries of the

cell. A regional series was created by merging the series

for stations within the circle, not just within the cell.

Because the data are generally not dense in space and

time, the larger circle allowed more stations to be

combined and the noise to be reduced. Two radii were

used for each gridcell size to help understand the para-

metric uncertainty in the dataset construction process.

Specifically, the circle for the 1.258 cells was given

radii of 100 and 200 km; for 2.58 cells, the radii were

200 and 300 km; and for 58 cells, the radii were 400 and

500 km.

Each cell was then checked to determine whether it

contained at least one station. If not, no further pro-

cessing of the cell was done, even if stations existed in
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the cell’s larger circle of influence. If the cell contained

at least one station, then additional criteria were checked.

Stations within the cell itself were tested to determine

whether the valid temperatures collectively covered at

least 75% of the months in the time period. If so, pro-

cessing continued. If not, the stations were checked to

determine whether the valid temperatures collectively

covered 50% of the time period. If so, and if the valid

temperatures of all of the stations in the circle of in-

fluence covered at least 90% of the time period, pro-

cessing continued. If not, no further processing was

done.

In cases when processing continued, the record of

each station in the circle of influence was tested to make

sure it overlapped the record of at least one other sta-

tion so that debiasing could be carried out. If not, the

station was omitted unless its record by itself accounted

for at least 90% of the time period. After stations with

unqualified records were omitted, the remaining sta-

tions were checked to make sure they still accounted for

at least 90% of the time period. For cells having only

one qualifying station, the trend for the cells was com-

puted directly from the anomalies of the single time

series. For cells having more than one station, the times

series for these stations were merged into a single series.

Merging followed the technique of Christy et al. (2006)

in which times series are debiased relative to one an-

other and combined to create a single regional series

from which the trend was then computed.

The goal of varying the parameters was to create sev-

eral regional time series for each cell to quantify varia-

bility or error. By varying the construction parameters

and examining the spread of results, one measure of the

confidence that may be ascribed to the results could be

gained. For each time series the following methods were

used for this purpose:

1) Where possible, a regional time series was created

for each cell from the stations within the cell’s circle

of influence and the trend was computed. By calcu-

lating trends using two values for the radius of the

circle and two values of H, four trends were pro-

duced. The method was applied to 1.258, 2.58, and 58

cells, though for the analysis to follow, only the four

values from the full 58 grid box will be used.

2) For the central 58 cell two additional methods were

used.

(a) The median of the trends of the nested cells (ei-

ther the 1.258 cells or the 2.58 cells) was computed.

This method produced eight trends—four trends

from the 1.258 cells (radius 5 100, 200 km; H 5

20, 12) and four from the 2.58 cells (radius 5 200,

300 km; H 5 20, 12).

(b) After creating the time series of comparably

nested cells the series were merged into a single

series using the technique of Christy et al. (2006).

Cells were comparable if they were the same size

and were based on the same radius and the same

value of H. The trend of the resulting anomaly

series was computed. This method also produced

eight trend values.

For the central 58 cell discussed below, we have a total

of two, four, and four trend values, from methods 1, 2a,

and 2b, respectively, for each H (either 12 or 20.) This

gives a total of 10 realizations for each H and a total of

20 for both.

5. Trend results

Because the metric of the ‘‘linear trend of anomalies’’

is sensitive to homogenization methods, it exposes in-

stances where the method has noticeable parametric

dependence. The main results come from the central 58

cell.

The first example shows the influence of the choice

of H. The three time series in Fig. 1 represent the TMax

anomalies since 1905 for the 2.58 cell whose southwest

corner is 58S, 358E—the southwestern quarter of the

central 58 cell. This cell uses data from six stations within

the cell and eight outside, but within a 300-km radius of

influence. In the merged, unadjusted time series (top,

H 5 ‘) there are clear indications of spurious shifts,

particularly in the early part of the record. When the

individual stations are adjusted for H 5 20 and merged,

the major shifts are removed (middle). Removing the

shifts in the stations that trip the H 5 12 threshold

produces a time series with a slightly positive trend

(bottom). The early part of the record contains more

variability, in part because of fewer stations reporting at

that time.

Figures 2 and 3 show the trends in the 2.58 cells for

TMax and TMin (radius of 300 km) as color tiles for the

period of 1946–2004 for the three thresholds of H. The

central 58 cell is outlined with a darker border. (Note:

The three time series of Fig. 1 are represented in the

lower-left corner of the central 58 cell in Fig. 2.) Stations

utilized in the calculations are shown as filled circles,

while stations that are not used are open. The cells on

the periphery of the central 58 cell generally depend on

only one or two stations, so that as the break points are

applied, the trend may change dramatically. However,

within the central cell, changes are less remarkable

because of the presence of many more stations. The

outer cells, for which fewer stations are available, reveal

a wider range of variation in both figures.
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Because stations tended to report TMin more faith-

fully than TMax, evidently because maximum ther-

mometers failed more often as indicated by some re-

ports, it was the case that more TMin cells passed the

criteria for calculation than TMax. In general the results

indicate the presence of near-neutral trends in TMax and

positive trends in TMin.

Figure 4 displays the trend results for TMax as a bar

chart for the three time periods and the three threshold

levels of H. For a given value of H, the error bars rep-

resent the 62-sigma extent determined from the 10

realizations based on parametric variations. In all cases,

the magnitude of the trend is close to zero, and only in

the case of 1946–2004, unadjusted (H 5 ‘), does the

error bar not cross zero. Because the pre-1946 data are

sparse and variable, high confidence cannot be placed in

the 1905–2004 trends.

Figure 5 displays the results for TMin. As with TMax,

the 1905–2004 trends are not robust where large error

bars indicate large parametric uncertainty. The trends in

TMin are very likely significantly positive and apparently

accelerating as the magnitudes for the latest period

exceed those of the 1946–2004 period. However, there is

little parametric uncertainty in the remaining results.

Adjustments for break points tend to reduce the trends,

but they still remain positive in all of the later periods.

Note that the magnitudes of the trends for H 5 20 and

H 5 12 are quite similar in the 1946 and 1979 cases for

both TMax and TMin, indicating the major breaks were

captured with the weaker criterion (H 5 20).

Finally, Fig. 6 shows the results of TAvg and TMean.

Here, TAvg is generated only from stations with both

TMax and TMin observations and is based primarily on

BEA and GHCN data; TMean is generated from all data,

including data from WWR, GISS, etc., for which only

TMean are available. Thus, TAvg is created from a subset

of TMean listings and represents a time series in which

the site location is known with greater confidence.

Included in the result are the trends calculated from

Hadley Centre Climate Research Unit Temperature,

version 3, variance adjusted (HadCRUT3v; land and

ocean), University of East Anglia Climate Research Unit

Temperature, version 3, variance adjusted (CRUTEM3v;

land; Brohan et al. 2006), and GISS (Hansen et al. 1999).

HadCRUT3v uses CRUTEM3v for the land surface

stations, so the difference apparently is due to the con-

tribution in HadCRUT3v from the sea surface temper-

atures in the southeast corner of the cell. (Trends cal-

culated from HadCRUT3, i.e., the variance-unadjusted

version, were essentially identical to HadCRUT3v, and

so are not included.) The data in Fig. 6 show that the

1905–2004 trends of TAvg and TMean are likely positive.

The trends calculated in our study for 1946–2004 and

1979–2004 and across parameters are consistent with

10.18C decade21. The surface temperature trends from

HadCRUT3v and CRUTEM3v are similar to our anal-

yses in the 1946–2004 period, but are much higher for

1979–2004, being highly inconsistent with the values

we calculated under many parameterizations and data

sources. GISS trends tend to be more positive than cal-

culated by our methodology, especially in the most

recent period as well, even though a type of urban ad-

justment has been applied (Hansen et al. 1999).

Only a few datasets have used separately minimum

and maximum temperatures to track global trends in

FIG. 1. TMax time series of the 2.58 grid cell centered on 3.758S,

36.258E for three values of the break-point threshold: (top) H 5 ‘

(raw data), (middle) H 5 20, and (bottom) H 5 12.
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temperature. The GHCN data or datasets do include

maximum and minimum temperatures and have been

important tools in understanding long-term climate

trends. The GHCN data have shown large asymmetries

in warming TMax and TMin through most of the data

record, with warming in TMin being more than twice that

of TMax (Karl et al. 1993). However, recent analyses of

this dataset (Vose et al. 2005) have indicated that glob-

ally the asymmetry declined significantly in the 1979–

2004 period, with TMax and TMin warming at nearly the

same rate.

The large asymmetries in warming rates in TMax and

TMin in the 1979–2004 in the present East Africa dataset

are thus at odds with the global findings of Vose et al.

(2005), and in fact the asymmetries are more like the

global asymmetries found in the 1900–79 period re-

ported by Karl et al. (1993). There is a concern about

the recent trends reported by Vose et al. (2005) in that

the number of stations in the adjusted analysis drops

from nearly 3000 stations in 1970 to less than 1500 in

2004. Further, the locations of stations are not well dis-

tributed around the globe, with few stations in the de-

veloping world in South America, India, and Africa,

which are similar socioeconomically to East Africa.

6. Discussion

a. Trend error estimates

Though we have shown simple parametric error in

the trends that were just calculated, assessing com-

plete trend ‘‘error’’ is difficult. We first examine two

FIG. 2. Demonstration of the effect on 1946–2004 TMax trends caused by varying the break-point detection threshold H applied to the

station time series: (left) H 5 ‘ (raw data), (middle) H 5 20, and (right) H 5 12. The stations contributing to the time series of a 2.58 cell

lie in a circle of radius 300 km centered on the cell. The 58 grid box outlined in bold is discussed in section 6.

FIG. 3. Same as in Fig. 2, but for TMin.
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calculations of ‘‘measurement error.’’ This is error

resulting from data problems, such as station moves,

instrument changes, missing data, etc., and seeks to

quantify a range of realizations that encompasses the

true trend. The first measurement error model uses a

traditional statistical approach, while the second looks

at the structural uncertainty of the methodology,

expanding on Figs. 4–6. We will also look at the issue of

temporal sampling error, that is, the confidence one may

place in the slope of a straight line fitted through vari-

able data of a specific length of time.

For the first analysis, we calculate the year-by-year

standard error of the individual time series values based

on the multiple stations used to produce the mean values.

Using the time series of the central 58 3 58 square, annual

values of the standard error of TMean, TMax, and TMin are

0.288, 0.418, and 0.378C, respectively, for the pre-1946

period and 0.188, 0.248, and 0.218C, respectively, after

1945. Applying these calculated errors 1000 times by

taking the original time series and perturbing each year

by an error consistent with the distribution to generate

1000 time series, yields 95% confidence intervals for

FIG. 4. Estimated value of the TMax trend (8C decade21) beginning in the year indicated and

ending in 2004 for the 58 grid box centered on 2.58S, 37.58E. Light gray represents the median of

ten realizations based on parametric variations. The error bars are the 62s spread of the 10

realizations. Dark gray represents the trend of the time series formed from stations within 400 km

of the center of the cell. Break points for these stations were identified using a test statistic

of H 5 20.

FIG. 5. Same as in Fig. 4, but for TMin
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trends (8C decade21), shown in Table 2 as the top error

estimate. Because the errors are not large and are as-

sumed to be random in time, they have little impact on

the longest time periods.

The second error estimate in Table 2 targets ‘‘struc-

tural’’ uncertainty, quantified here by varying the param-

eters of the construction process (i.e., H and the radius of

influence), as discussed previously. Because the errors

calculated from 1905 show greater and, in our view, more

realistic magnitudes with this second method, we believe

it more accurately represents the measurement uncer-

tainty of the trends. However, in Table 2, we take the

parametric error range to be the 95% CI of the com-

bined realizations for H 5 20 and H 5 12, and thus

generally larger than that shown in Figs. 4–6 where

values for H 5 20 and H 5 12 are separately calculated

and presented. These estimates are listed as the middle

error in Table 2. The general result regarding error

distributions to this point is that as the time period

shortens and the statistical error range increases, while

the parametric error range may not. This occurs in the

latter case because as the density of observations in-

creases (toward the end), the influence of parametric

variations on a larger sample introduces reduced

changes in the mean of the larger sample.

A different type of error is now discussed. The trend

used here is the slope of the line calculated by linear

regression through the time series. If the time series is

short, or if the individual values have large variations

relative to the magnitude of the slope, then adding a

single anomalous value at the beginning or end of the

data has the potential to tilt the line of best fit from its

initial value and thus expose the time series as not ro-

bust to temporal sampling. This is not measurement error

because a perfect time series will exhibit this character-

istic, and will be called ‘‘temporal sampling error’’ here.

In our case, temporal sampling error will have its

greatest impact on the shortest period studied, the 26 yr

during 1979–2004, because the longer periods will pro-

duce only minor temporal sampling error potential

(Table 2, bottom error estimate).

The difficulty in calculating the temporal sampling error

for a relatively short time series is that the theoretical

population of 26-yr samples from which we theoretically

extract samples at random must have experienced the

same sequence of external forcing events as the obser-

vations (e.g., El Niño, volcanoes, solar, greenhouse

gases, boundary layer influences, etc.). Not having ac-

cess to such a population, we show the values in Table 2

assuming random forcing, which produces very large

error ranges, likely much larger than those in reality.

b. Difference between TMax and TMin trends

The time series of annual anomalies of TMax and TMin

for the central 58 cell are shown in Fig. 7 using the pa-

rameters of the ‘‘best estimate,’’ that is, the trend that is

calculated using the 58 grid as a single cell with H 5 20

and the radius of influence of 400 km. The clear rise in

TMin is evident since 1946, whereas little change is evi-

dent in the time series of TMax over the same period.

FIG. 6. Same as in Fig. 4, but for TAvg (light gray) and TMean (medium gray). The bars with

patterns are trends calculated from the HadCRU3v, CRUTEM3v, and GISS surface temper-

ature datasets.
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Evidence in Table 2 indicates that trends in TMean, TMin,

and (TMax 2 TMin) are very likely significantly different

from zero for 1946–2004 and likely are so for 1979–2004.

The magnitude of the TMax trend is likely not signifi-

cantly different from zero. The large asymmetries in

warming rates in TMax and TMin since 1979 in the pre-

sent analysis are thus at odds with Vose et al. (2005),

who found comparable warming rates in TMax and TMin

at the global scale for that period. Notably, however, the

Vose et al. (2005) analysis was hampered by a lack of

data for developing world in general (including East

Africa).

The recent trends of TMean calculated from global da-

tasets do not agree with our results for this cell. As shown

in Table 2, the 1979–2004 TMean trend of the central 58

cell as produced by HadCRUT3v, CRUTEM3v, and

GISS (10.318, 10.478, and 10.358C decade21, respec-

tively) are markedly inconsistent with all of the time

series for that cell constructed in this study. Evidently,

the main signal used by HadCRUT3v for this cell since

1979 is derived from the single Nairobi, Kenya, station

at Jomo Kenyatta Airport (P. Jones 2004, personal

communication). Our unadjusted time series for this site

does indeed show significant warming since 1979

(10.258C decade21), but the higher trend is not cor-

roborated by the many nearby stations used in our

analysis. Such differences were also found in central

California (Christy et al. 2006) and northern Alabama

(Christy 2002), where our more comprehensive recon-

structions were on average about 0.18C decade21 more

negative in the cells covering those areas versus values

for the cell from global databases.

c. Possible causes for TMax and TMin differences

The fact that the trends in the two temperature

measurements (TMax and TMin) are likely significantly

different encourages an examination of the causes for

the warming of TMin and the significance of trends in

TMin in the context of tracking global climate change.

Given a lack of detail on station siting and uncertainties

in specifics on the boundary layer in East Africa, de-

finitive reasons for the trends may not be available.

However, general aspects of boundary layer behavior

may provide some guide for interpreting the trends. Thus,

the following should be viewed as a context and hy-

pothesis for the trend differences that deserve discussion

and further attention.

1) GENERAL DISCUSSION

What do differing TMax and TMin trends mean in the

context of detecting the magnitude of anthropogenic

warming? Usually TMax occurs in the daytime when the

surface is vertically connected via dry-adiabatic mixing

processes to a mixing depth of 1.5–2.5 km as determined

from the Nairobi radiosonde. The southeast corner of

the central 58 cell is exposed to the trade wind inversion

off the Indian Ocean and may not achieve such mixing

depths. However, most of the cell, and indeed the area

where most observations were made, is in the central

highlands with relatively deep daytime mixing. Because

of the vigorous mixing processes in the daytime, vertical

gradients in potential temperatures are modest. Thus,

TMax is more representative of temperatures aloft, at

least at the top of the boundary layer, and is better able

to serve as a proxy for heat content of a substantial mass

of the lower atmosphere.

On the other hand, TMin, which occurs during the

night or early morning, represents the temperature of a

much smaller mass of air because nocturnal boundary

layers (NBL) are often only a few hundred meters thick

(Stull 1988). Because of smaller turbulent intensities

substantial vertical gradients exist. Thus, TMin is often

representative only of a shallow layer and is sensitive to

measurement heights and local land surface properties

because of the strong vertical gradients (Runnalls and

Oke 2006; Pielke and Matsui 2005). Also, wind speeds

TABLE 2. Estimated trends (by least squares linear regression)

and errors of the central 58 cell (8C decade21). Upper trend value:

median of trends and 95% CI from 20 realizations of time series

using both break-point thresholds (H 5 12 and 20) and all of the

subsetting variations described in section 6a. Lower trend value

(italics): the ‘‘best estimate’’ trend determined by considering the 58

cell as a single grid square with a break-point threshold of H 5 20

and a radius of 400 km. The three error estimates for each trend

value are described in section 6a: (top) standard measurement

error, (middle) parametric measurement error, and (bottom)

temporal sampling error. The last rows show the TMean trends for

this cell derived from the surface temperature datasets.

1905–2004 1946–2004 1979–2004

Trend Error Trend Error Trend Error

TMax 10.00

10.02

60.01

60.05

60.02

10.02,

10.02

60.02

60.08

60.05

10.05,

10.05

60.09

60.08

60.19

TMin 10.00

20.01

60.02

60.08

60.04

10.09

10.11

60.03

60.04

60.05

10.16

10.15

60.11

60.08

60.17

TMax 2 TMin 10.00,

10.03

60.02

60.07

60.03

20.06

20.09

60.03

60.09

60.05

20.10

20.09

60.08

60.08

60.20

TAvg 10.04,

10.02

60.01

60.08

60.03

10.09

10.07

60.02

60.08

60.04

10.10

10.12

60.06

60.08

60.18

TMean 10.06

10.04

60.01

60.08

60.03

10.11

10.10

60.02

60.06

60.05

10.12

10.11

60.06

60.07

60.18

HadCRUT3v 10.14 10.11 10.31

CRUTEM3v - 10.13 10.47

GISS 10.17 10.22 10.35
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in the NBL are usually less than those in the daytime so

that the horizontal footprint of the observation of TMin

is less than that of TMax. Overall, the representative

observational volume for detecting accumulated heat in

the atmosphere is much smaller for TMin than for TMax

(Pielke et al. 2007).

To further complicate matters for TMin, McNider

et al. (1995), Van de Wiel et al. (2002), and Walters et al.

(2007) demonstrate that the NBL in which TMin is

measured acts as a delicate, nonlinear dynamical sys-

tem. In some parameter spaces this system responds

with large changes in TMin for only slight changes in

parameters, such as roughness, wind speed, or radiative

forcing. Colder TMin temperatures occur when the sta-

ble boundary layer decouples from the deep layer above

and cools radiatively. Warmer TMin temperatures are

maintained when the surface is coupled by turbulent

mixing to the warmer layer aloft. Any slight forcing that

disrupts the decoupling leads to greater mixing and thus

to warmer values of TMin. Thus, TMin is often more

dependent on the turbulent state of the atmosphere

than on temperature imposed from the atmosphere

above (McNider et al. 1995).

As shown by Shi et al. (2005) and Runnalls and Oke

(2006), there are many candidates for increasing the

frequency of disruption events of the stable NBL, in-

cluding changes in roughness (with the introduction of

buildings or trees), surface thermal forcing (with the

introduction of heat absorbing surfaces such as asphalt),

heat capacity of the surface (with irrigated cropland re-

placing desert soil), thermal forcing from aerosols in the

shallow layer, and greenhouse gas increases (Walters

et al. 2007). Such disruptive events need to occur only a

few times more per year than previously observed to

produce a noticeable change in the average TMin because

these transition events often warm the air by several

degrees. This warming is caused by a transition to a

more turbulent state in which heat is redistributed. Even

if the transition to a more turbulent state is by green-

house gas radiation (Walters et al. 2007), the resulting

warming is due to a redistribution of heat to the lowest

few hundred meters of the atmosphere rather than re-

flecting an accumulation of heat in the deep atmosphere.

As noted in Pielke et al. (2007) and Lin et al. (2007),

because TMin represents only a shallow layer and trends

in TMin could be more indicative of trends in the local

turbulent state, then a better proxy for detecting climate

change of the deep, global atmosphere may be found in

TMax. Though TMax is also influenced by variations in

local surroundings (e.g., by cooling from irrigation or

warming from urbanization), the greater ventilation and

connectivity to the deeper troposphere argues that it is a

better proxy than TMean (influenced by TMin for de-

tecting changes considered to be affecting the deep

troposphere, such as enhanced greenhouse warming.

This is not meant to say that TMax will always be a good

measure for deep atmosphere trends, because upper-

level inversions can also cause the daytime boundary

FIG. 7. Time series of annual anomalies of TMax and TMin as determined for the 58 Nairobi

grid cell. The time series were formed from stations within 400 km of the center of the cell.

Break points for these stations were identified using a test statistic of H 5 20. The arrow

indicates 1946, the year when a significant amount of data began to be available. Earlier

anomalies, especially before 1922, are highly uncertain.
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layer temperatures to be disconnected from the boundary

layer, but it has a higher probability of being representa-

tive of the deeper atmosphere than TMin. Confounding

factors include alterations of the surface through ur-

banization, agriculture, etc.

2) APPLICATION TO THE CENTRAL 58 CELL

The main grid cell in this study contains the highlands

of Kenya and Tanzania, and in particular those towns

and cities with weather stations where tremendous

growth and change have occurred. Nairobi, for example,

consisting of 714 km2, has experienced significant sur-

face changes resulting from development. Urban areas

expanded from 14 to 61 km2 and agricultural lands ex-

panded from 50 to 88 km2 between 1976 and 2000.

Forested areas declined from 100 to 24 km2 (Mundia

and Aniya 2005). This growth has altered the landscape

and some of its meteorological parameters such as

roughness and heat capacity that may retard or prevent

the decoupling of the NBL, and thus lead to warmer

surface conditions at night.

For example, changes in roughness can dramatically

change surface temperatures in the stable boundary

layer. As shown by McNider et al. (1995), as trees or

buildings replace grass, increases in roughness can lead

to substantially warmer temperatures. Also, for low and

moderate wind speeds, increases in heat capacity arising

from concrete replacing vegetative mulch or irrigation

increasing soil water content (with accompanying in-

creases in heat capacity and conductivity), can lead to

perceived warming (Shi et al. 2005). Given the rapid

population growth near the observation sites in the East

African highlands, such changes are likely.

In addition to land use change, aerosol forcing in the

NBL may play a role. In East Africa the common prac-

tice of burning biomass for warmth, cooking, and light,

especially in the early evening, tends to fill the shallow

NBL of these communities, where most weather stations

are sited, with a visible layer of smoke. Additionally, the

large smoke aerosols, smaller hygroscopic aerosols, and

larger coated organic aerosols may readily swell when

the humidity reaches 80% (common in East African

evenings). In combination, these produce a nighttime

pall that is characteristic of the underdeveloped world.

Although the magnitude of aerosol forcing in East

Africa is not known, model studies in Los Angeles,

California, where the concentration of large thermally

active aerosols is likely much smaller than East Africa,

showed that the presence of aerosols accounted for an

enhancement of nocturnal downwelling radiation of 13

W m22 (Jacobson 1997). A recent study in India, where

aerosol forcing may be similar to East Africa, attempted

to account for their role and estimated a daily mean of

downwelling radiation enhancement from aerosols of

6.5 to 8.2 W m22 (Panicker et al. 2008.)

As shown by Eastman et al. (2001), such additional

forcing from greenhouse gases may differentially act to

warm the decoupled NBL because the additional forc-

ing is confined to a shallow layer. In a sensitivity study of

direct temperature response using techniques of non-

linear analysis to greenhouse gas forcing, Walters et al.

(2007) showed that the NBL had a range of sensitivity

depending on the imposed parameter space.

Figure 8 shows a bifurcation diagram for enhanced

downward radiation from aerosols, which is like the

downward radiation from greenhouse gases (see Nair

et al. 2008, manuscript submitted to J. Geophys. Res.,

hereafter NAI). It shows (a) large linear temperature

sensitivity in light winds, (b) multiple solutions for in-

termediate winds, and (c) less sensitivity in strong

winds. Under light winds (Fig. 8a) as downward ra-

diation increases the NBL temperature increases line-

arly in response with a slope or sensitivity of about

0.12 K (W m22)21. Under strong winds (Fig. 8c), when

the NBL depth is greater and mixing is strong, the

simple model indicates less sensitivity because tempera-

tures stay warm due to mixing. However, at intermediate

winds (Fig. 8b), the temperature difference between the

two states can be of the order of 7–9 K and have a

sensitivity of 0.28–0.36 K (W m22)21, depending on

roughness length. This large sensitivity is due to a dynamic

feedback in that the additional downward radiative forc-

ing destabilizes the NBL and disrupts the decoupling

process, leading to large increases in TMin as warm air is

mixed from aloft. Note that this warming is due to a

redistribution of heat, not to heat added by the down-

ward radiation. While the two-layer boundary layer

model used to develop Fig. 8 is simple and the sensitivity

depends partially on the assumed layer depth, the layer

depth is chosen such that the model replicates the actual

difference in surface air temperatures in observations

between a windy (weakly stable) and calm (strongly

stable) night (Steeneveld et al. 2006). While the mag-

nitude of the warming resulting from destabilization

may be different between the real atmosphere and the

simple model, the process of radiative destabilization by

weak radiative forcing is likely real.

Recent results to be reported (NAI) using a more

complete model show a sensitivity for the NBL of

0.06 K (W m22)21 for a light wind case in general

agreement with the simple model. NAI also show that

the sensitivity of the daytime (convective boundary

layer) temperature to aerosol forcing was only one-third

as sensitive as the NBL. Thus, while the change in in-

coming shortwave energy resulting from aerosols was

larger than the enhanced downward longwave energy
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FIG. 8. Bifurcation diagrams of the temperature solutions for variations in

radiative forcing (bifurcation parameter) of the nocturnal boundary layer or

NBL (Walters et al. 2007). The regions of interest are the 0–25 W m22

anomalous (aerosol) forcing calculations, which are enlarged. (a) Light wind

case (geostrophic speed 3 m s21) showing no impact on the turbulent state,

with NBL temperatures warming linearly with forcing. (b) Intermediate wind

case (7 m s21) in which solutions can be much warmer when the decoupling

process is interrupted and mixing occurs. (c) High-wind case (10 m s21) when

mixing is strong generating consistently warm NBL temperatures. Line colors

give roughness length: z0 5 0.1 m (green), z0 5 0.25 m (red), z0 5 0.5 m

(pink), and z0 5 1.0 m (blue).
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from aerosols, the net effect was little difference in the

TMin. While Walters et al. (2007) showed that direct

greenhouse gas forcing or clouds can cause similar ef-

fects, the magnitude of the aerosol forcing in the heavily

polluted environments likely cannot be ignored.

Increases in cloudiness can also impact nighttime

temperatures (Dai et al. 2006). However, inferred

trends in East Africa cloudiness in studies of glacial loss

on Mount Kilimanjaro indicate a possible decrease

(Mote and Kaser 2007). In summary, it seems probable

that the TMin signal observed in East Africa is due to, at

least in part, the changing surface character and/or air

quality in the NBL and its influence on mixing from

warmer layers above.

The observation that the trends of TMax and TMin are

different in many locations around the world has been

documented in several sources (e.g., Easterling et al. 1997)

though when globally averaged, the difference seems to

have been decreasing in the most recent two decades

(Vose et al. 2005), unlike our results for East Africa. The

implication of our reconstruction for East Africa, north

Alabama (Christy 2002), and central California (Christy

et al. 2006) support the lack of positive trends in TMax, and

thus the possibility that these truly indicate the nature of

changes in the deep troposphere. The reason it is im-

portant to separate the shallow warming as measured by

TMin from warming of the deep atmosphere is that the

heat accumulated in the deep atmosphere is responsible

for many of the indirect climate feedbacks, such as that

of increased water vapor. The increased radiative path-

length for water vapor resulting from warming of a

shallow layer is not likely to support the level of feed-

back in a deep, warmer atmosphere.

7. Conclusions

Constructing a dataset of surface temperatures for

East Africa requires significant human intervention to

digitize and to make decisions about such basic activi-

ties as organizing the data into site-consistent time se-

ries. Once the data were organized by site (60 in Kenya

and 58 in Tanzania), it was found that for many sites,

multiple sources of data existed. A ‘‘best-guess algo-

rithm’’ was applied to the sources to achieve a single

time series for each of the 118 sites. A statistical method

was then applied to detect and remove inhomogeneities

at differing thresholds. From these 118 time series re-

gional time series were created that combined individ-

ual time series meeting criteria of nearness to the re-

gion, length of record, and the ability to be merged with

the other time series.

The most data-rich region studied here was the 58 grid

cell bounded by 58S–08 and 358E–408E, which represents

portions of southern Kenya and northeastern Tanzania.

For the 100-yr period from 1905 to 2004 in this grid cell,

the trends were near zero for both TMax and TMin, but

confidence in these results is low because of the rela-

tively sparse data in the years before 1946. Beginning

with 1946 and ending in 2004, near-zero trends were

found for TMax. The TMin trends were more positive,

and significantly so based on both measurement error

and temporal sampling error. It is difficult to assess the

measurement error of these trends, but using the spread

of 20 realizations in which the construction parameters

were varied, the range of 60.108C decade21 is plausible.

The fact that the difference in trends in TMax and TMin

continues, and in fact accelerates, in the period of

1979–2004 in East Africa may be important in inter-

preting the results of Vose et al. (2005). While it is

possible that East Africa difference trends are indeed

different than that of the globe as provided by Vose

et al. (2005), there is concern that the reduced number

of stations in the 1979–2004 GHCN dataset may not be

sampling many of the areas of the globe that are be-

having like East Africa. Thus, it is important that the

GHCN dataset be expanded to include more stations

distributed around the globe.

The noticeable difference in trends of TMax and TMin

implies that daytime and nighttime temperatures are

responding differently to environmental factors. Changes

in the surface characteristics and the boundary layer

atmospheric constituents may be responsible for the

relatively recent and rapid rise in TMin. There appears to

be little change in East Africa’s TMax, and if TMax is

a suitable proxy for climate changes affecting the

deep atmosphere, there has been little impact in the past

half-century.

The investigation of the surface temperature record

as an indicator of human-induced climate change in-

volves understanding the complex behavior of bound-

ary layer processes (where surface temperatures are

actually measured) and how temperatures within it

are affected by the numerous changes that occur. This is

an area of research open for considerable inquiry be-

cause it raises new questions concerning the types of

data indices now used to detect climate change. At the

least, the time series of both TMax and TMin should be-

come separate variables to be studied for long-term

changes.
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