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Abstract

In this paper we focus on the large n probability distribution function of the largest
eigenvalue in the Gaussian Orthogonal Ensemble of n x n matrices (GOE,,). We prove
an Edgeworth type Theorem for the largest eigenvalue probability distribution function of
GOE,,. The correction terms to the limiting probability distribution are expressed in terms
of the same Painlevé II functions appearing in the Tracy-Widom distribution. We conclude
with a brief discussion of the GSE,, case.

1 Introduction

Limiting probability distributions laws from Random Matrix Theory have found many
applications outside their initial domain of discovery; the length of the longest in-
creasing subsequence ( P. Deift et al. [1]) properly scaled converges in distribution to
the Unitary Tracy-Widom law, the properly scaled largest principal component of a
white Wishart converges in distribution to the Orthogonal Tracy-Widom law (I. M.
Johnstone [I4]). For recent reviews we refer the reader to [, 5 [6, 13, 27]. In these
applications of Tracy-Widom distributions, one would like to control quantitatively
the range of validity of the various limit laws. One therefore needs finite n correction
to these limiting distributions. In a previous work [2] we initiated the study of this
problem for the Gaussian Unitary Ensemble of n by n matrices (GUE,). Following
this work, we will derive the analogous result for the Gaussian Orthogonal Ensemble
(GOE,) in this paper. The derivation of the probability distribution function of the
largest eigenvalue for Gaussian Symplectic Ensemble (GSE,,) is similar to the GOE,,
case up to the parity of the size n of matrices in consideration. We will therefore
mention at each step of the derivation the corresponding result without much expla-
nations except when it is necessary. We seek a large n expansion of the probability
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distribution function of the largest eigenvalue in GOE, and GSE, similar to the
following Edgeworth Expansion arising in probability in applications of the Central
Limit Theorem.

If S, is a sum of i.i.d. random variables X, each with mean u and variance o2,
then the distribution £}, of the normalized random variable (S,, —nu)/(o0+/n) satisfies
the Edgeworth expansio

Fy(z) — ®(z) = ¢() Z n R () + o(n” ) (L.1)

uniformly in . Here ® is the standard normal distribution with density ¢, and R;
are polynomials depending only on E(X Jk) but not on n and r (or the underlying
distribution of the Xj).

If we view the random matrix ensembles of n by n matrices in terms of the
associated eigenvalues, then the Gaussian (-ensembles are probability spaces on n-
tuples of random variables {\, ..., \,} (think of them as eigenvalues of a randomly
chosen matrix from the ensemble.) The probability density that the eigenvalues lie
in an infinitesimal intervals about the points x4, ..., x, is

/8 n
Pzt 20) = Crgexp <—§ in H |; — |’ (1.2)
1 i<k
with
—oo<x; <oo, fori=1--- n. (1.3)
Here C,,3 is the normalizing constant such that the total integral over the z;’s is one.
The cases § = 1, 2, 4 correspond to the GOE,,, GUE, and GSE,, respectively. We
denote the largest eigenvalue by )\ﬁ/lax, and

Fost) =P\’ <t (1.4)

max

the probability distribution function.
When ( = 2, the harmonic oscillator wave functions

1 2
_ —z?/2 _
(pk(l’) = (Qkk'ﬁ)l/2 Hk(x)e ]{7—0, 1, 2,
obtained by orthonormalizing the sequence z* e=** (with Hy(z) the Hermite polyno-
mials of degree k) play an important role. We also have the Hermite kernel

€T —
k=0 Y

which is the kernel of an integral operator K, acting on L?(t,00) , with resolvent

Ru(z,y;t) = (I — K,) 'Ky (x,y). (1.6)

"We assume, of course, the moments IE(XJ’-“), k = 3,...,r, exist; and as well, the condition
lim|¢| o0 sup |¢(¢)| < oo where ¢ is the characteristic function of X, see [7].
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The product on the right is operator multiplication. We have the following represen-
tation of (L2), (see for example, [16])

Pro(z1,- -+, 2n) = det(Kn(i’«“ia%’))lgian~

Following Tracy and Widom [24], we define

n

o) = (5)%%(9:), w(a) = (g)%_m, (17)

by e the integral operator with kernel

ei(z) = %sgn(aj—t), (1.8)

D the differentiation with respect to the independent variable,

Qualzit) = (I - K,)7', a'py) (1.9)
and '
Poi(z;t) = (I — K™, 2'¢n_1). (1.10)
We introduce the following quantities
Un,i(t) = (Qnyirn);  Vni(t) = (P, ¢n), (1.12)
f}n,z(t) = (Qn,ia (pn—l)a and wn,z(t) = (Pn,ia (pn—l)- (]-]-3)

Here (-,-) denotes the inner product on L?*(t,00). In our notation, the subscript
without the n represents the scaled limit of that quantity when n goes to infinity, and
we dropped the second subscript ¢ when it is zero.

If Aiis Airy function, the kernel K, 5(z,y) then scaledd to the Airy kernel

Ai(X) AT(Y) — Ai(Y) AT(X)

Kan(X)Y) = Ty

Our conventions are as follows:

(1.15)
(1.16)
s)=q(s), pi(s) = Pi(s;s), po(s)=p(s), (1.17)
ui(s) = (Qi, Ai), uo(s) =u(s), wi(s) = (P, Al), wo(s) = v(s), (1.18)
=w (1.19)

0i(s) = (Qi, AT'),  o(s) =0(s), wi(t) = (P, Al'), and w(s) (s)-

2For the precise definition of this scaling, see the next section



Here (-,-) denotes the inner product on L?(s,00) and i = 0, 1, 2.

We also note that ¢(s) is the solution to the Pailevé II equation ¢”(s) = sq(s) +2¢3(s)
with the boundary condition ¢(s) ~ Ai(s) as s — oc.

We use the subscript n for unscaled quantities only.

t t t
R ::/ R,(xz,t;t)dx, Pna ::/ P, (z;t)dz, Qua ::/ Qn(x; t)de,

— 00 —0o0

(1.20)
and
Rna(t) ::/_ ()R (x, t;t)de,  Ppalt) ::/_ gi(x)Py(x; t)de,
Qi) = [ a)Qulwit)d. (1.21)
The epsilon quantities are
Que(wit) = ((I = Ko) 7' (2,9), £0(y)),  @ue(t) = Que(tit) (1.22)
un,e(t) - (Qn,g(l’;t),@(l’)), r&n,e(t) - (Qn,s(x;t%w(x))v (123>

where (-, ) denotes the inner product on L?(t, o).

The GOE,, and GSE,, analogue of (L28)) in Theorem [[T] bellow will follow from
representations (equations (40) and (41) of [24].)

Fon(t)? = Fus(t) - ((1 0 (1~ 5 Rua(8)) — 5 (gncl0) - cw)Pml(t)) (1.24)

and

Fualt/VEP = Foalt) (1= 500) (14 3R0s0) + 5000 Pra(®)) . (129

Here we first derive a large n-expansion of R, 1, Pn1, Rn4, P, Une, andg, . in terms
of p, and ¢,, by solving the associated systems of differential equations. We then
substitute the resulting expressions in ([.24)) and (L25]). We will need the following
result which gives the large n expansion of F}, ».

Theorem 1.1. [Z] If we set
t=(2(m+c)?+22n"5s and (1.26)
E.o:= E.5(s) = 2wy — 3us + (—20c% + 3)vp + uyvo — upvy + uevi — udwe.  (1.27)

Then as n — oo

Foa(t) = Fy(s) {1 +cug(s)nF — iEag(s) n_%} +0(n™) (1.28)

20

uniformly in s, and

Fy(s) = lim F,5(t) = exp (— /:o(x—s)q(at)2da7) (1.29)

n—~0o0

1s the Tracy-Widom distribution.



1.1 Statement of our results

To state our main result we need the following definitions
a:=a(s) = / q(z) u(x) dz, (1.30)
pimnts) = [ atwys (1.31)
V= u(s) = / p@)dz = als) — qls), (1.32)

1 o
n:=mn(s) = m / (6qv + 3pu + 2ps + 2p1v + 2pv1 — 2qou — 2q1 Uy — 2qu2) (x) dx —

20cq'(s) + 3p(s)
20V/2

(1.33)

1 _ ca cp (2c—1)12 _ v _
E.1(s) = —%Ec,g(s)e H— 2—u2+@+%+cu <cqe B @(l—e “)) +

2 2 2 2 2 2.2
e (1/(1/+80q) n ) g (2\/§cq —3n LY —8(2cp + *¢®) — At

2 42 12 3201

2 2
— % + 22,u2u (cqa + il/2 + (- c)q2)> — (4’ + 3" — 1°) CO;Z(;L). (1.34)

Unfortunately, we did not find a simple representation of n and E. ;. Nevertheless
the quantities a(s), u(s), v(s), n(s) and E.;(s) are easy to compute numerically. For
E.1(s) and n(s) we only need the recurrences relations defining p;(s) and ¢(s) in
term of ¢(s) and ¢'(s). We find the following representation of the large n probability
distribution function for \,,., in GOE,. The derivation of the analogous result for
the GSE,, follows exactly the same steps as the one given in this paper. Here is our
main result.

Theorem 1.2. We set

Then as n — oo

E.1(s)n"3 } + O™ (1.36)

uniformly for bounded s.



Note that unlike the GUE,, case vyhere for ¢ = 0 the n~3 correction term vanishes
as shown in equation (28], the n~3 correction term does not vanish in the GOE,
no matter what the fine tuning constant c is.

In §2 we reproduce the derivation of (I.24]) following Tracy and Widom in [24]. In
83 we solve the system of equations satisfied by the various functions on the right of
(L24)) for our derivation of the Edgeworth expansion of the probability distribution
of the largest eigenvalue in the GOE,,.

2 Derivation of I}, 3

We treat here the case n even. If we set

K _ Kn,2+w®590 ngD—Qﬁ@(P (21)
n,1 eEKpo—e+ey)p®@cecp Kpo+e)p@op .

then F | (t) is the Fredholm determinant of K, ; on the set J = (t, 00). If we denote by
x the multiplication by the function x;(z), then F? () is the Fredholm determinant
of the integral operator with kerne

. Kn72+¢®5gp Kn,2D_¢®90
Kn,l—xxx)(gKn,Q_Hw@w el e ) )

- Kn,2+¢®ap ngD—iﬂ@(P
_X<6Kn72—€+8¢®690 Kpo+ep®@op X (2:2)

on R | see for example [24] equation (31). Using the following commutators,
[Kn2,D] = ¢@¢+9Q¢p,  [6,Kno) = —cpQ@ep —epQep  (2.3)

() and ¢ appear as a consequence of the Christophel Darboux formula applied to
K, 2,) we have

Koo+ 9v®@p=DecK,s+Dep@ep=D(eK 2+ e ®ep) =D(K,26 —cp @ e)

KnoD -9 ®@e=DKnp+9®1%=DKy+ Dep @c =D (Kpp+ep®1)
and
eEKna—eteyp®@ep=K,pe—c—cpQcy
as De = [. Our kernel is now

D(Knpe—ep®ep) D (Kpp+ep®1)) ) X (2.4)

Kn71:X<Kn72€—€—€(P®€1/J Kpo+ep®@e

:<XD 0)_( (Knoe—ep ®eb)x (Kn,2+6so®w)x) (2.5)
0 X (Kppe—e—cp@e)x (Knz+ep®@p)x '

3To simplify notation we kept the same notation for the integral operator as well as the kernel
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Since K, is of the form AB, we can use the fact that det(/ — AB) = det(/ — BA)
and deduce that the Fredholm determinant of K, ; is unchanged if instead we take
K, to be

(oo (Kasesonn) (10 0) oy

Kpoe—e—cp®ep)x (Kpa+ehp®p)x 0 x
_ (Kpoe —ep®ep)x D (Kng +ep®@1)x (2.7)
(Knpe—c—co@e)x D (Ku2+eh®p)x '
B - I —(Kype—ecp@ec)x D —(Kn2+ep®@v)x
det(/ — K1) = det< —(Kppe—e—cp@ep)xD I —(Kpo+cp®@p)x )
(2.8)

Performing row and column operations on the matrix] does not change the Fredholm
determinant. We first subtract row 1 from row 2, next we add column 2 to column 1
to have the following matrix

(I—(Kn,ze—swew)xD—(Kn,2+aso®w>x —(Kn,z+aso®w)x> (2.9)
exD 1 T

Right-multiply column 2 by —e y D and add it to column 1, and multiply row 2 by
(Kp2+ep®1)x and add it to row 1 to have

< I —(Kuoe—ep@e)xD— (Kpo+ep@U)x+ (Kua+ep@t¢)xexD 0 )
0 1)
(2.10)
We therefore have,

det(I — K1) = det (I — (Kppe —cp@ep)x D+ (Kpa+ep@¢)x (exD — 1))
(2.11)
= det (I — Knox — Kn2(I —x)ex D — (ep @ ¥)(x — xexD) — ep @ vex D) (2.12)

We used the fact that ¢ is antisymmetric to have
cpRepxD=cpR@Ye'xD = —cp@ex D,
and if we note that y is multiplication, then the determinant is
= det (I — Knpx = Kna(I = X)ex D —ep @ ¢(1 — x)exD — e @ X)) .

Next we factor out I — K, 5 and note that (I — K, 2)"' = I + R, 5, where R, » was
defined as the resolvent of K, o, and (I — ng)_lap = Q.. We are interested on the
determinant of the following operator

(I_Kn,2X) (]_(Kn,2+Rn,2Kn,2)<I_X)5X D_Qn,e®¢<1_X)‘gXD_Qn,E(X)de) . (213>

We have a large n-expansion of det(/ — K, 2x) = F,2 from the author work in
GUE, see [2] or [3]. We will therefore focus our attention on the second factor of

4This does not change the determinant, for more details see [24]
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2I3). We will represent this factor in the form (I — Z?:l a; ® ;) and use the
well known formula det(I — Zle o; @ ;) = det(0;; — (i, ﬁj))mzl _____
Fredholm determinant. First we need to find a representation of ex D as a finite rank
operator. To this end we introduce in this section the following notation,

., to expand the

ep(z) =e(x—ay), Rip(x)=Ry2(z,a;), O(x)=0(r—ay), a1 =t, and ay=o0.
With the new notation J = (¢, 00) = (a1, az), and the commutator
[X D] = _51®51+52®52>

gives
e[x D] = —e1 ® 01 + 2 ® 0.

Next we use the identity ¢ D = I to have
(I=x)exD=(I=x)elx Dl =—=(I =x)e1 @1+ (I = x)e2 @ b, (2.14)
and the representation

(Knz+ Rop Kn2)(I = X)ex D= Y (=1)(Kp2+ Rup Knp)(I = x)er @ 6. (2.15)

k=12

We substitute (2.I4]) and (2.I5) in the second factor of (2.I3) and have,

I— Z (_1>k(Kn,2+Rn,2Kn,2>([_X)€k®5k_ Z (—1)an,5®¢ ' (1_X)€k®5k_Qn,€®X¢
k=12 k=12
(2.16)
The dot in this formula represent operator multiplication. In this case we just multiply

the kernels using the formula (o ® 5)(y®96) = (8, 7)a®J, to have the following form
of (2.16)

I— Z (_1)k(Kn,2+Rn,2Kn,2>([_X)€k®6k_ Z (—1)k(¢7 (I_X)gk)Qnﬁ@ék_Qn,e@Xq/}
k=1,2 k=1,2
(2.17)
We have

1 1
&= 5, (I —x)e1=(I —x)ea = —3 and Ry = Ry s(x,00) = 0.
If we substitute these value in (ZI7), it then becomes,

I— Qn,a X X’g/) - %[(knﬂ + Rn,2 Kn72)(l - X) + (wa ([ - X))Qn,a} ® (51 - 52) (218)

This operator is of the desired form

I— Zak®/6k

k=1,2
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with

1
a1 = Qn’g, Qg = 5 [(l{img—i—ng ng)(]—)() +G1Qn75:|, 51 = XID, 62 = 51 —52, (219)
and
ay = (w, (I - X))
The corresponding inner product are;
(041, ﬁl) = 77n,€7 (Oél, ﬁ2) = Qne + Cyp (220>
with
1 [ 1 [~
cp =€ p(00) = 5 o(x)dr cp =ec1p(o0) = 5 Y(z) de, (2.21)
and for n even
(n!)1/2

Co = (7‘(‘ n)1/42—3/4—n/2

OBk (2.22)

and

1 B 1
(ag, B1) = §(Pn,1 —a + ), (ag,f2) = 5(7%1 + a1Gn e — a1¢y). (2.23)

The determinant of (2.I7)) is therefore

- 1 1
(1 - Un,a)(]- - §Rn,1) - §(QTL,€ - Ccp)Pn,l- (224)

In a similar way we obtain the second factor on the right side of (L2H) for the GSE,
case

(1—0ne)(1+ %RM) + %qw(t) Pra(t). (2.25)

We will derive differential equations involving the various terms in equation (2:24))
and solutions in terms of ¢, and p,. Then used known asymptotic of ¢, and p,, for
the derivation of a large n expansion of £}, ;.

3 Differential Equations

3.1 System of Differential Equations

This section will be devoted to finding expressions of

Rn,l(t)a Pn,l(t)u Qn,e (t), and r&n,E (t)7

and show how to obtain the corresponding quantities

,R/n,4 (t), and Pn74<t)



for the GSE,,.
To solve the associated system of differential equations it is convenient to introduce
the following quantities

Qn,l (t>7 un,e (t),

and
pn2(z,y)  the kernel of (I — K, 5x) " (3.1)
We have
pn,2(x>y) = 5(!13' _y) + Rn,Q(zvy)a (32)
and
dR (t) d/t Ro(x,t)d R (tt)+/t dR (z,t)dz (3.3)
-, 'n = n s T = Iip s - i s . .
a e\ T gy ) R 2 o

Formula (45) of [24] gives
d d
_Rn,2($a t) - ——ng(l', t) - pn(t)Qn($7 t) - ann(xa t)a (34)
dt dx

and we find that

/ d

Rn,l(t) = E,R'n,l(t) = —Pn(t) Qn,l(t) - Qn(t) Pn,l(t)' (3-5)

We also have
/ d d [?
Q1) = 5Qult) = 5 [ Quaitide = (01~ Ruslt)).  (39)

and
, d d [*

Poi(t) = %Pn,l(t) =a P,(z;t)dx = pp(t)(1 — Rna(t)), (3.7)

where we used

iQn(aj, t) = —qu(t) Rpo(z,t), and iPn(x; t) = —pn(t) Roo(x,t). (3.8)

dt dt
The other derivatives are
d d [ * d
—Une(t) = = [ Qu(z,t)ep(z)dr = —q,(t)ep(t) + —Qn(z,t)e p(z) dz (3.9)
dt dt J, , dt

O+ [ Rl e0le) ) = ~0.0) [ puae. e pla) de, (310

and therefore

’

Upe(t) = —an(t) Gne(t). (3.11)
Similarly
%f/n,a(t) = %/too P.(z,t)e p(x) de = —pn(t)egp(t)+/too %Pn(x,t)e o(z)dz, (3.12)

10



or

!

Upe(t) = —Pu(t) gne(t). (3.13)

The last of these is J p
e =5 [ paaltv) oty dy (3.14)

= — / a%pn,z(t, y) eo(y)dy — qn(t) (XPulys; ), €0(y)) — pu(t) (XQu (Y3 1), £0(1)).

(3.15)
Integration by parts together with the boundary conditions and De = I gives

- [ Gttt = [ st =, G160
which in turn gives
G e(t) = 4 (t) = Ve (£) 4 () — tn (1) (). (3.17)
The boundary conditions at ¢ = oo for these function are,
Rpi(o0) =0, Qpi(o0) =2c, and P,i(00) =2c, =0 asniseven. (3.18)

and
Upe(00) =0, up.(o00) =0, and g¢,.(00)=c,. (3.19)

The associated systems of equations are;

Q;L,e(t / = Qn(t) (1 - z~]n,5(t)) - pn(t) un,e(t)Q
(/1 - @n,a) (t) = pn(t) Qn@(t); (320)
Up e t) = _Qn(t) an e(t)
and )
(1 =Ru1) (1) = palt) Qua(t) + qu(t) Pun(t);
Q,.(t) = () (1 =R (1)); (3.21)
Pra(t) = () (1 = Rna(t)).
3.2 Asymptotic solutions
We will define in this subsection only
Vo) =1—0,.(t), and R,1(t) =1—R,.1(1). (3.22)

With this notation, system (B.20) is
d Up (1) 0 0 —qn(t) Un (1)
Zl Vee® =1 0 0 @) || Vae®) (3.23)
Qn,e(t) _pn(t) Qn(t> 0 Qn,s(t>

11



L Q) 0 0 @) Quat)
% ?n,l(t) = 0 0 pn(t) ’ ?n,l(t) : (3'24)
R (t) Pu(t) au(t) O R (t)

If we let
X' = (une(t), Vie(®), gne(t))  and Y= (Qu1(t), Paa(t), Rua(t)),
then ([B20) and ([B2T]) have the following representations
X'(t) = A@t)X(t) and Y'(t) = B(t)Y(t) (3.25)

with
X*o0) = (0,1,¢,), and Y'(oc) = (2¢,,0,1). (3.26)

We note that A(t) is continuous for ¢ bounded away from —oo. We need to show that
our matrix A(t) is bounded as an operator on L'(t,00) ® L'(t,00) ® L!(t, 00) for this
end we will use the Max norm. The entries of A(t) are ¢, (x) and £p,(z).

o0 1 [ee]
/ |qn (z)| dx = —/ lq(2) +f(x)n_%‘da: =M, with M; < o (3.27)
t \/§ S
We made use of the following change of variables together with formulaﬁ(2.29) of [3]

X s
r=V2n+——, and t=V2n+-—, (3.28)
V2ns V2ns
the fact that the asymptotics for p at infinity can be obtained from the following
representation p = ¢ + uq where u(oco) = 0 or that u(z) is bounded for = away
from minus infinity. We also assumed without lost of generalities for this section that

3
p(z) ~ Const - z/%¢75%% as 2 — oo which is a consequence of the asymptotics

_2

q(x) ~ gme ™

(2.29) of [3] is represented in terms of finite combinations of bounded functions (the

w's, vi’s, wi's ) ', i =0,1,2, with p and ¢q. So again we assumed that the scaled
3

value of g,(z) was of order nsz2¢=3%% as x — oco. A similar argument hold for p,,

here we use formula (2.30) of [3] instead.

as x — o0o. We also remarked that the scaled value of ¢, in

/:O |pn ()| do = % /:O‘q(x) +g(x)n_%}dm =M, with M, < oo. (3.29)

Note that ||A||ryree and ||Bl|yae are at most 2M; + 2Ms. The fundamental local
existence of solution for linear Ordinary Differential Equation says that equations
([(328) have solutions in (a,c0) with a bounded away from infinity given by

X(t) = exp (- /t OOA(:):)d:);) - X(c0), and Y(t) = exp (— [ h B(:c)d:r) Y (00).
(3.30)

"We set the constant ¢ in (2.29) to zero, and use the known asymptotic of q(x) at infinity to
deduce the existance of the integral.

12



This solution is convenient for the large n expansion of the probability distribution
since it allows us to give a series expansion of the solutions of our solution in terms
of g, and p,. The other advantage is the built in symmetries in matrices A and B.
These symmetries make the computation of the matrix exponential very easy. We

will start with the first system X () = exp (— [~ A(z)dz) - X (c0). We set
0 0 [ () da
exp (—/ A(z) dx) = exp 0 0 — [ pu(z) da
¢
ftoo po(z)dr  — ftoo qn () dx 0
= exp(M). (3.31)
M is of the form
0 O a
M=[0 0 -b (3.32)
b —a 0
with
klkk k1k+1k1 kk+1k
1+ Zk>1 : @R : Zk>1 : T2k : Zk>0 %
klklkl klkk k:k:k:l
exp(M) = Zk>1 : T2k TS+ Zk>1 : TR : Zk>0 2(21«?1+
k kpk+1 kak+l k k kipk
Zk>0 2(2kf1 - Zkzo ﬁ 1+ Zk>1 % 2k)b
exp(M)11 exp(M)is exp(M )3
= | exp(M)a exp(M)y exp(M)as (3.33)
exp(M)31 exp(M)32 exp(M)33
We have
Un’e(t> = eXp(M)12 -+ Cyp exp(M)lg, (334)
Vie(t) = exp(M)a + c, exp(M)as, (3.35)
and
Gne(t) = exp(M)sas + c, exp(M)ss. (3.36)

3.2.1 Scaling

At this point we scale the functions involved in ([B.33) in terms of n at the point
corresponding to the expected value of the largest eigenvalue. If we set

t=1(s) =+2(n+c)+ , (3.37)

%n%
then equations (2.29) and (2.30) of [3] are
2c—1

0 (r(5) = Qu(r(o37(6)) =0 () + | 25100 catehute)|

wl=

13



+ [ (10¢* — 10c + g)ql(s) + pa(s) 4+ (—30c* + 10c¢ + g)q(s)v(s)

+p1(s)v(s) + p(s)vi(s) — qa(s)u(s) — qi(s)ui(s) — q(s)ua(s)

2

n 3

+ (—10c* + g)p(s)u(s) + 2002q(8)u2(8)} 50 - O(n_l)eq(s)> , (3.38)

and

o=
=

pn(T(s)) = Pn(T(S)Q 7(8)) =n

(a9 + | 25205~ catoyuts)]

+ [(10¢* 4+ 10¢ + g)ql(s) + pa(s) + (=30¢* = 10¢ + g)q(s)v(s)

+p1(s)v(s) + p(s)vi(s) — ga(s)u(s) — qi(s)ui(s) — q(s)ua(s)

2
3

+ (—=10c* + g)p(s)u(s) + 2002q(s)u2(8)] n20 + O(n_l)ep(s)> : (3.39)

If we change the variable in a and b by settingﬁ x := 7(x), we obtain

o= [Tarde = 5 [ (st + |25 000 - eyt n

+ {(1002 —10c + §)ql(:)s) + pa(z) + (—30c* + 10c + g)q(:v)v(a:)

=

2
+p1(z)v(z) + p(z)vi(r) — g2(z)u(r) — qr(z)ur(r) — g(@)us(x)

_2
n- s

20

+ (—=10c* + g)p(:c)u(x) + 2002q(3:)u2(:c)} + O(n_l)eq(x)> dr, (3.40)

= ao(s) + ar(s)n™? + ag(s)n" 3 + ag(s)n

and

Wl

b= [ ooyt = 5 [ (st + [ 25000 - eyt

+ {(1002 + 10c + g)ql (z) + pa() + (—30c* — 10¢ + g)q(:v)v(a:)

+pi(@)o(z) + p(r)v () — (v)u(r) = ¢ ()u (z) — g(z)ua(z)

+(—108 + g)p(x)u(x) +2002q(:c)u2(3:)] ”2_05 —i—O(n_l)ep(x)) de (341

= ap(s) + by (s)n™ 3 + bay(s)n ™3 + by(s)n~ .

SWe use the same letter in both sides in the change here to simplify notation.
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We next focus on the following expression
"o = (ab)* = (a2 + ag(ar + by)n"5 + (ao(by + az) + ayby)n™5 + Dn~ )",
An expansion of this expression is
a"* = (ab)" = ao + k:a% 2 (ao(al + bl)n_é + (ag(by + az) + albl)n—§ + Dn_1> +

k(k—1 1 2 2
%agk ! (ao(al +b1)n"3 + (ag(be + ag) + arby)n™3 + D”_1> +

ZCL% 22( ) <&0(CL1 + bl)n_% + (ao(bg + ag) + albl)n_% + Dn_1> .
If we note that fori >3
(ao(al + bl)n_é + (ag(be + az) + albl)n_% + Dn_l) = O(n_l),

then the sum in this last term can be represented as

k k
(R [k L, k(k—1)
Eaékz(i)()(n 1>:<Z“3k2(z‘)+“3k+ka3“+7a3’“4—ao — kag*?

=3 =3

_Ma%—‘l) O(n™) = ((ag + 1) —agf — kay ™ — Ma%“l) O(n™1).

2 0 2 0
We have
k 2k—2
(C;O@' <a0(a1 + b)) 3 + (ag(by + az) + arby)n"s + Dn—l) - (3.42)
2%k—1 2%k—2 2%—2
Qg 1 _2 ag _2 ag -1
- v v D
2(2k — 1) <(a1 Fhons (a2 £ bo)n 3) ok T ey P
and for k > 2
k(k—1 2
wa%k_zl (ao(al + bl)n_% + (ao(bQ + CLQ) + albl)n_§ -+ Dn_1> = (343)
3k ’ (2)k ’ 2, —2 1
(8(% ) 8(2k— 1)!) <(a1 o)+ 0 )) '
We have at this stage,
2klkbk 2k1 2k12k1 2k12k1
1+ Z =1+ Z Z2(2]€—1) (a1+b1n —|— ZT_D(CLQ—F[)Q)
k>1 k>
_2
n 3+

k—12k—2 k—12k—2 k—1,2k—2
2" ag ( 2" ag 2" ag

; 82k —2)l ; 8(2k — 1)!) (a1 +b1)°
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2 Mag +1)%
ZTO(TL ) (3.44)

k>1

(ag + bo) (\/5&0)%_1
22 ; k-1

\/_aozk a1+bl \/7a k=1
S DLl

>1

a1y (v2a0) (V2a)? (V2a0)%* o 2
2@&0; (2k — 1)! +<;W_;m) (ay+b1)" | n"3+
(2a5 +2)¢ |
; TR O(n™) (3.45)
— % (1 + cosh(\/ﬁao)) + @;73561) sinh(v/2ag) n"3 + [% sinh(x/ﬁao) I

aib I a| -2
Wi sinh(v/2a0) + (COSh(\/_ao) N 81nh(\/§a0)) (a1 + by) } n-s+4
cosh(2a2 +1)O(n™") = exp(M);; = exp(M)gn (3.46)

A similar argument gives

PholghHipit a—b
—————— = —(1—cosh(v2 1 — cosh(v?2 —
2 on] 2( cos (fao)> +[ S (1 — cos (\/_ao))
ai +by . _1 bi(by —a1) | as—by bi(ar —by)  (ay +by)?
h(v2 —
777 oo (fao)} ns +[ 202 T e T 2 T+

Wl

by — az) cosh(v3a0) + <5¢§b§ C3V2ad V2aby V2(a + bz)) sinh(v/2ao) | n-

ag 16&0 16&0 8&0 4
+ cosh(V2a0) O(n™!) = exp(M);a, (3.47)

if we interchange a and b, then

2k—1ak—1bk+1 1

- (1 — cosh(\/§a0)> + [

e =3 (1 — cosh(v2ag)) —

2a,
k>1 0

&124\;;1 sinh(\/ﬁao)] n"s + [

as — by 5v2a2  3v202  \2aiby V2(ax +bo) )\ _2
20 )cosh(\/iao)%—( 6w 160 Sam 1 sinh(v/2a) | n

al(al — bl) i bg — A2 I <a1(b1 — al) (a1 + b1)2 I

202 2a0 2¢¢ 8

+ cosh(V2a0) O(n™!) = exp(M ), (3.48)

We also have
ok o k+1pk

L. a + by 1
m = ﬁ sinh(v/2a0) + [ 5 cosh(v/2a0) + fao smh(\/iao)} n-3 4+

k>0 (

16



K(al SR — , bz) cosh(v/2ag) + <(“1 LT + i

8ap 2ag 2 42 8v2a2  2v2a2
ai/—ao)smh(\/_ao)] n‘§+sinh(\/§ao)0(n_1) = exp(M)13 = —exp(M)ss,
(3.49)

and if we interchange a and b in this last formula,

sinh(v/2ag) + [ . —2i_ b1 cosh(v/2ag) +

2kakbk+l 1

2T Va Ve
K(al +0)®  af N a2+b2) cosh(v3ag) + ((a1+b1)2 (a1 +by)? . a?

smh(fa@ ns +

8ay 2a 2 44/2 8v2a:  2v/2a?
+ 62\/_%) smh(\/_ao)] ni sinh(v2a0)O(n™') = exp(M)s; = —exp(M)as.
(3.50)

The last term of the exponential matrix ([3.33) is

2k gk pk a; + by . 1 a, +b
1+;W = cosh(v/2a0) + 1\/5 L sinh(v2a0) n”5 + {( . 1 )’ cosh(v/2ag) +

a1b: a2+b2_(a1+b1)2 sin a n_% cos a n!) = ex
(S + 2 = ) (V) 4+ cosh(V2an) O™ p<(f\§>51)

We note that v/2ag is exactly the quantity p defined in [24] as the new variable when
solving for the limiting system of equation as n goes to infinity.

We then use equations (3.35), (340), (B50) together with the numerical value of
¢, for n even given by (2.22)) to have the following expansion of V,, . and g, ..

a] — bl Sil’lh(\/iao) ay + bl exp(—\/iao)

Vielr(s) = 5(1exp(—v2a)+ | L ST

(CLl + bl)2 1 \/5(&2 + bg) a% (CL1 + bl)2 1
< S (1-— \/§ao) — 1 + 2\/5@0] cosh(v/2a0) — [ 8 (1+ \/5&0)
(a1 + b)? aib a2 V2(az—ba)  V2(az + by)

16a3  2y2a, 43 4v/2aq 4

and

1
n 3+

sinh(\/§a0)> w305

n

dne(7(s)) = %exp(—\/?ao) +

<[\/§(a1 + b1)? 1 bt ag + by COSh(\/_ao) [bz — a3 " az + by

a; — bl Sil’lh(\/iao)
2 \/éao

CL1+b1

exp(—v2ao) —

s U ) T 2 2V2a 2
V2(ar + b)) L )+ by + V2 + br)” \/_b2] 81nh(fa0)> n ‘3+O( )

— 1
8 (1+ V2ao"  2ag 16a2 4a?
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3.2.2 Second system of equations involving the calligraphic variables for
GOE,

The system involving the calligraphic variables is

Y (t) = exp <— /t h B(x)dm) Y (00). (3.52)

We set
0 0 — [ qn(x) dx
exp (—/ B(x) dm) = exp 0 0 — [ pa(x) da
t
—ftoopn(x)dx —ftoo qn(x) dx 0
= exp(M).
M is of the form
0 0 —a
M= 0 0 -b (3.53)
—b —a 0
with
klkk klklkl k k+11k
1+ Zk>1 % Zk>1 2 +) ’ Ek>0 2o 2k:1b
k k k k k: k k k k
exp(M) = Zk>1 % L+ Zk>1 : (21k) : Zk>0 : 2kf:1+1
k kpk+1 k k+1pk kak k
Zk>0 o 21«?1 Zk>0 2o 2k+1b L+ Zkzl %
exp(M)11 exp(M)iz exp(M)3
= | exp(M)ar exp(M)y exp(M)as (3.54)
exp(M)s1 exp(M)zz  exp(M)sz3
We have
Qn,l(t) = 2¢, exp(M)11 + exp(M)is, (3.55)
Pua(t) = 2cpexp(M)a + exp(M)as, (3.56)
and 3
Rui(t) = 2cyoexp(M)s + exp(M)szs. (3.57)
We note that exp(May) = —exp(M)ar, exp(Mas) = exp(M)qs, exp(Msy) =

—exp(M)sz; and exp(Ms3) = exp(M)sz. The solutions ([F506) and BET) follow
directly from the large n expansion obtained in the last subsection. We therefore
have the following solutions for P, ; and R, ;

(exp(—\/ﬁao)—l)—i— ai/%ail +a1—2|-bl p(— \/_CLO)
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(CL1 + b1)2 i \/§(a% + albl)

_ bl — a7 Siﬂh(\/?@(])) n_ < \/_al \/§a1b1 i a9 — bg i
44/2 2a?

V2aq 2 2% 2a3 V2aq
2

2 2 2 2

aj a9 — bg b :| |: (CLl + bl) (CL1 + bl) aj
+ L | cosh(v2a + —

(V2a0) + 12 8v2a2  2v2a2

4&0 \/§Clo 4@0
} sinh(v/2 ao)) nd 4 0(%) (3.58)

a2

\/_ao

and

Rua(7(s)) = exp(—v2a0) +

_1
3

\/5 \/5&0 - \/§

(a1 + b1)2 as + by (al 4 bl) ( )
{( 1 G ) exp(—V/2ag) — cosh(v/2ag) — 4\/§a0 sinh(v/2ay)

(al ;C_Lob1> Slnh(fao) 2a Ob2 Sinh(\/i%) \/_ao COSh(\/_aO) - 2— smh(\/_ao)} B
N 0(%) (3.59)

ay; — bl Slnh(\/ia0> ar + bl exp(—\/ﬁao)]

3.2.3 Calligraphic variables for GSE,

We note that the GSE,, case is identical to the GOE,, up to a sign change and the
parity of n for the calligraphic variables. The large n expansion for wu,, .(t) and 0, .(¢)
follows from the matrix exponential ([B33]). The boundary conditions need to be
change to u,(0c0) = 0 and 7, (c0) = 0 and ¢, (c0) = 0 as n is odd. Therefore in
this case

un,e(t) = eXp(M)12 (360)

Vie(t) = exp(M)sz (3.61)
and

Ine(t) = exp(M)s (3.62)

The large n expansions of these quantities is given by (3.47), (3.46) and ([3.49) re-
spectively.
The system of equations satisfied by the calligraphic variables is

at 7?n,4(t) = 0 0 —pn(t) ’ 7?n,4(t) : (3.63)
Rna(t) —pu(t) —an(t) 0 Rya(t)
where R, 4(t) = 1 4+ R,.4(t). The boundary conditions in this case are
Qn 4(00) —C@ 0
na(00) | = —cp | = | — as n is odd (3.64)
Rn74(OO) 1 1

We can use the same technique as for the Orthogonal case to find a large n expansion
of Qn74(t), ,Pn,4(t) and Rn74(t).
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3.3 Large n expansion of the probability distribution of the
largest eigenvalue

We recall that the quantity of interest is (2Z.24]). Under our change of variables it
reads

1 1 1

_Rn,l) I (qn,a _Ccp)Pn,l - 5

(1_@7175)(1_2 2

[Vm(l + Ront) = Pot (Gue — c@)} . (3.65)

Upon substitutions of the newly derived expressions in the right of (8.65), the right
side of (3.69) takes the form

eXp(—\/§a0) * {%2;0()1 (1 B eXp(_‘/ﬁCLO)) - al\}%bl exp(—\/ﬁao)} n=s

9 - 2 _ 12 2
{&151 a2 N as — by n <3a1 b _ (a1 + by) G +b2) exp(—Q\/?ao)

2a2 2a 8v/2aq 16v2a, 44/2
+b)?  3(ag+b 2 +by)? : b —b
n <(a1 1)”  3ax+by) a (a1 +b1) i S S 2) exp(—V/2a)
4 4\/7 2a0 16\/_0,0 2\/_a0 4\/5(1,0 2CLO
(a1 + bl)

sinh(v/2ag) — 2— cosh(\/_ao)} ni o+ O(%) (3.66)

8ad ag

We follow Tracy and Widom [24] and denote by s (s) the quantity v/2aq(s),

= p(s) = V2ag(s) = /OO q(x)dx, (3.67)

and we introduce the following notations,

f / (20‘ ole) — afa)uta) ) d

- cq<x>u<x>) dr,

~al (e

as(s) = ﬁ /SOO ((1002 — 10c + g)ql(x) + pa(z) + (—30¢* + 10c + g)q(x)v(x) + pro(z)

3

+p(@)or(2) = ga(w)u(w) — qi(@)u () — g(@)us(w) + (5 = 106) p(z)u(w) + 2002q(93)u2($)) da,

ba(s) = ﬁ/s ((1002 + 10c + g)ql(x) + pa(z) + (—30¢® — 10c + g)q(x)v(x) + pro(x)
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+p(x)v(z) — g2(z)u(z) — qu(x)ur (x) — q(x)us(x) + (g —10¢*) p(z)u(z) + 2002Q($)u2($)) dz.
We note that . -
a(s) —bi(s) = 7/ p(z) dz, (3.69)
a1(s) + bi(s) = % / (2p(z) — 2eq(z)u(z))dz = —v2eq(s),  (3.70)
and
)= hs) = = / )= @) = <o) (3.71)
We set

n(s) = as(s)+ba(s) =0 f / < 20¢%+3) ¢1 (x)+2pa(2)+ (—60¢°+3) g(z)v(z) +2p1v(z)
+2p(x)vr () = 22(2)u(x) = 2q1 (2)us () — 2g(x)us(x) + (3 — 20¢%) p(z)u(x)

+ 4002q(:)3)u2(x)) dzx. (3.72)

20c%¢'(s) +3p(s) 1 /°°
= - + 6qU—+3pu—+2ps+2p1v+2pv1 —2qou—2q1 U1 —2qus) () d.
075 20ﬂ8(q PU+2pa+2p1 0+2pu1—2q2u—2¢1 Uy Q(2)(>)
3.73

This last equality comes from

(20¢® + 3)q1(z) + (3 — 60c*)g(z)v(x) + (3 — 20c*)p(x)u(z) + 402 q(z)u?(z) =
20c* (q1(x) — 3q(z)v(z) — p(z)u(z) + 2q(2x)u’(2)) + 3(q(x) + q(x)v(z) + p(z)u(z)),

(3.74)
the substitutions

@1 () = zq(z) — q(z)v(z) + p(r)u(z), and q(z)=p'(z)+q(x)v(z), (3.75)
in (374)
20¢*(xq(x) — 4q(x)v(z) + 2q(x)u?(x)) + 3(p'(2) + 2q(z)v(2) + p(z)u(z))
= 20¢ (zq(x) + 2q(z) (—2v(z) + v*(x))) + 3(p'(z) + 2¢(2)v(z) + p(z)u(z)), (3.76)
and the substitutions
(z) = u*(z) — 2v(z), and ¢"(z) = zq(z) + 2¢%(x) (3.77)

in (B3.76])
20¢* (zq(z) + 2¢°(2)) + 3(p'(z) + 2q(2)v(z) + p(z)u(x))
= 20" (z) + 3p/(z) + 6gq(x)v(z) + 3p(x)u(x). (3.78)
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With these representations, (3.60) is

e H {cq(s)e‘“ — iu(l — e—“)] n‘ﬂ{@zﬂ — iu/:o q(z)u(z)dx + cp(s)

241 4p 2142 241
A—2c+1/4 5 cle—1) [ 2 * 22 g(s)
[TV - TV /S q(z)u(x)dx + o (/S q(x)u(x)d:v) iy

2 2 2 2 o0

n | o, [€d(s)  3n 2—,u(c —c+1/4 , 2% —c /
——— e F+ — + vt — v x)u(z)dz
4[} { 2 INCRRDTE 2 ;v ) @)

2
+%(/:O q(x)u(:):)dg;)2) _Eg(s) - 1/4, . /:O J(@)u(x)dz — cp(s)

S S 4 20
c? > ?
1 </$ q(x)u(x)dx)

e—“+022‘12(8) sinth(p) — (ﬂﬁ — Py / " g(o)u(w)da
c? (/:O q(x)u(x)dx)z) %2(”)} ni o+ O(l) (3.79)

G 2
n

as n goes to infinity uniformly for s bounded away from minus infinity.

Finally we combine ([B79) with Theorem([.T] to have the following version of The-
orem(2]

If we set t = 7(s), then as n — oo

P = 50) Lt 4 Jolato) +uo)e - Lo -]t +

1 . cals) | cp(s) (2¢—1)1? LV .
|:—2—0EC72($)6 ~ o + 2 + " + cu(s) (cq(s)e ——,u(l—e ))

Y /A a’(s) Ag(s) (P —=crvals) N (3 —2c+ ) V2
42 811 811 4y 811

- AgP(s)  3n Fai(s) ep(s)  ¢E(s) N Fra(s) (=3 +) I/2+
2 42 4p 241 81 4u 8

2—u(§a%$ <m¥—@uaw>+<i—c+8>ﬂ>> .

212 2 2 2

1, 2\ 2 2 2
—gt+c) v h
<c2 o?(s) — Fva(s) + (3 5 ) ) COSM;'LL) + 22 gs) sinh(,u)] n } +0m™h
uniformly in s.

To simplify the n~3 term in (Z80), we use the representation p(s) = ¢'(s)+q(s)u(s)
which says in this setting that v(s) = a(s) — q(s). The result of this substitution is
Theorem.2]
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4 Conclusion

We note that unlike F,, 5(t) for the GUE,,, the GOE,, large n expansion of the proba-
bility distribution of the largest eigenvalue F,, ;(t) has a non vanishing n~3% correction
term. Thus the convergence to the limiting Tracy-Widom distribution Fj(t) is slower.
Numerical applications of F}, ;(t) follows easily from ¢(s) this is one consequence of
our representation of F), ;(¢) in Theorem(I.2l All the terms on the right side of (I.30])
can be expressed in terms of ¢(s) and ¢'(s).

The GSE,, largest eigenvalue distribution is derived in a similar way (the only major
difference being that n needs to be odd in this case.)
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