ANOVA TABLES ## **Basic Table:** | Source Of
Variation | Sum Of
Squares* | Degrees Of
Freedom | Mean Square | F Test
Statistic | F Critical
Value | |--|--------------------|--|-------------------|--|---------------------| | Treatments (k)
(# of
population) | SSTR | k-1 (treatments-1) | SSTR/df =
MSTR | MSTR/MSE
(mean square
of the
treatments/
mean square
error) | Use F chart | | Error (random variable) | SSE | n _T -k (population -
#of treatments) | SSE/df = MSE | | | | Total | Total | n _⊤ -1 (population-1) | | | | ## **ANOVA Table with Blocks:** • Use when the main category being tested has sub-categories (blocks). | Source Of
Variation | Sum Of
Squares | Degrees
Of
Freedom | Mean Square | F Test
Statistic | F Critical
Value | |------------------------|-------------------|--------------------------|----------------------|---------------------|---------------------| | Treatments | SST | k-1 | SST/k-1 = MSTR | MSTR/MSE | Use F chart | | Blocks | SSB | b-1 | SSB/b-1 = MSB | MSB/MSE | | | Error | SSE | (k-1)(b-1) | SSE/(k-1)(b-1) = MSE | | | | Total | SST | n _T -1 | · | | | ## **ANOVA Two Factor with Replication:** Use when the 2+ main categories being tested have sub-categories. | Source Of
Variation | Sum Of
Squares* | Degrees
Of
Freedom | Mean Square | F Test Statistic | F Critical
Value | |------------------------|--------------------|--------------------------|---------------------------|------------------|---------------------| | Factor A | SSA | a-1 | SSA/a-1 = MSA | MSA/MSE | Use the F
chart | | Factor B | SSB | b-1 | SSB/b-1 = MSB | MSB/MSE | | | Interaction | SSAB | (a-1)(b-1) | SSAB/(a-1)(b-1) =
MSAB | MSAB/(a-1)(b-1) | | | Error | SSE | ab(r-1) | SSE/ab(n-1) = MSE | | | | Total | SST | n _⊤ -1 | | | | ^{*}Sum of squares is calculated by: $\Sigma (x_i - x_i)^2$ [take each data point, subtract the sample mean from each, square each difference, and add the squared numbers] For more information, visit a <u>tutor</u>. All appointments are available in-person at the Student Success Center, located in the Library, or online. Adapted from Anderson, D. R., Sweeney, D. J., Williams, T. A., Camm, J. D., & Cochran, J. J. (2018). *Statistics for Business & Economics* (13th Edition). Boston, MA: Cengage Learning.