

CAL III: POLAR, CYLINDRICAL, & SPHERICAL COORDINATES

Polar and Cylindrical Coordinates:

$\iint_{R} f(x, y) \, dx \, dy = \iint_{C} f(r\cos\theta, r\sin\theta) \cdot r \, dr \, d\theta$

- For limits of integration for a polar double integral, draw a ray extending radially outward from the origin and determine the functions at which it enters and at which it exits. For the θ limits, determine the initial and final angle of this ray. Note: 0 will usually be the last variable of integration.
- The Cylindrical coordinate system is built on the polar coordinate system with the addition of a variable to describe the distance from the $r-\theta$ plane (thought of as height"), notated as z. Note that this z is equivalent to that of the rectangular coordinate z. f the

$$\iiint_{D} f \, dV = \iiint_{D} f \, dz \, r \, dr \, d\theta$$

The limits of integration are similar to polar for r and θ and to rectangular for z. Note: θ will usually be the last variable of integration.

Spherical Coordinates:

- Spherical coordinates are defined by three parameters:
 - 1) ρ , the radial distance from a point to the origin.
 - 2) ϕ , the polar angle between a point and the positive z-axis.
 - 3) θ , the azimuth angle between the shadow of ρ on the x-y plane and positive x-axis.

 $\iiint_{D} f(x, y, z) dV = \iiint_{D} f(\rho sin\phi cos\theta, \rho sin\phi sin\theta, \rho cos\theta) dV = \iiint_{D} f(\rho, \phi, \theta) \rho^{2} sin\phi d\rho d\phi d\theta$

The limits of integration are found in similar fashion as cylindrical. Typically, first find ρ limits by drawing a ray from the origin through the region at angle ϕ and observe the functions which it enters and exits. Next, determine ϕ limits by observing the minimum ($\leq 0^{\circ}$) and maximum ($\geq 180^{\circ}$) angle made with the positive z-axis. Finally, observe the "shadow" of ray ρ on the x-y plane and determine the minimum and maximum angles it makes with the positive x-axis as it sweeps through the entire region.

Cylindrical to Rectangular	Spherical to Rectangular	Spherical to Cylindrical
$x = r \cos \theta$	$x = \rho \sin\phi \cos\theta$	$r = \rho \sin \phi$
$y = r \sin \theta$	$y = \rho \sin\phi \sin\theta$	$z = \rho cos \phi$
z = z	$z = \rho \cos \phi$	$\theta = \theta$
dV =	dx dy dz	Rectangular
	dz r dr dθ	Cylindrical
	$\rho^2 sin\phi d\rho d\phi d\theta$	Spherical

Jacobian of the

transformatio

Change of Variables:

• A change of variables or coordinate systems is often useful in solving complex integrals. When doing so, a Jacobian is a necessary accompaniment:

$$J(u, v) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \frac{\partial x}{\partial u} \cdot \frac{\partial y}{\partial v} - \frac{\partial y}{\partial u} \cdot \frac{\partial x}{\partial v} = \frac{\partial(x, y)}{\partial(u, v)}$$

• For example, the following Jacobian is required to transform cartesian to polar coordinates:

$$J(r,\theta) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} \frac{\partial (r\cos\theta)}{\partial r} & \frac{\partial (r\cos\theta)}{\partial \theta} \\ \frac{\partial (r\sin\theta)}{\partial r} & \frac{\partial (r\sin\theta)}{\partial \theta} \end{vmatrix} = |\cos\theta r\cos\theta + r\sin\theta \sin\theta| = r(\theta + \theta) = r$$

• Likewise, it can be shown that $J(\rho, \phi, \theta) = \rho^2 \sin \phi$ by adding a third row $\left(\frac{\partial z}{\partial(\cdot)}\right)$ and third column $\left(\frac{\partial(\cdot)}{\partial \phi}\right)$.

For more information, visit a <u>tutor</u>. All appointments are available in-person at the Student Success Center, located in the Library, or online. Adapted from Hass, J., Weir, M.D., & Thomas, G.B. (2012). *University Calculus: Early Transcendentals* (2nd ed.). Boston: Pearson Education.