

CALCULUS II - VECTORS

Vector Notation for 3-Dimensional Vector

• Component Form: $\overrightarrow{v} = \langle v_1, v_2, v_3 \rangle$

• "i-j-k" Notation: $\overrightarrow{v} = v_1 \hat{i} + v_2 \hat{j} + v_3 \hat{k}$

Magnitude or Length of a Vector:

$$|\vec{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Vector Operations: Let $\overrightarrow{u} = \langle u_1, u_2, u_3 \rangle$ and $\overrightarrow{v} = \langle v_1, v_2, v_3 \rangle$ with c being a scalar. Then vector addition is defined by $\overrightarrow{u} + \overrightarrow{v} = \langle u_1 + v_1, u_2 + v_2, u_3 + v_3 \rangle$ and scalar multiplication is defined by $\overrightarrow{cu} = \langle cu_1, cu_2, cu_3 \rangle$

Unit Vector: Given that \hat{v} is a nonzero vector, $\frac{\vec{v}}{|\vec{v}|}$ is the unit vector, also called the direction, of \vec{v} . The equation $\vec{v} = |\vec{v}| \frac{\vec{v}}{|\vec{v}|}$ expresses v as its length times its direction.

Dot Product of Two Vectors: $\overrightarrow{u} \cdot \overrightarrow{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$

Properties of Dot Product:

1)
$$\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{v} \cdot \overrightarrow{u}$$

2)
$$\overrightarrow{u} \cdot (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w}$$

$$3) \quad 0 \cdot \overrightarrow{v} = 0$$

4)
$$(\overrightarrow{cu}) \cdot \overrightarrow{v} = \overrightarrow{u} \cdot (\overrightarrow{cv}) = \overrightarrow{c(u \cdot v)}$$

5)
$$\overrightarrow{u} \cdot \overrightarrow{u} = |\overrightarrow{u}|^2$$

6) Two vectors are orthogonal if $\overrightarrow{u} \cdot \overrightarrow{v} = 0$

Angle Between Two Nonzero Vectors: $\theta = cos^{-1}(\frac{\hat{u}\cdot\hat{v}}{|\hat{u}||\hat{v}|})$

Projection of \vec{u} onto \vec{v} : $proj_{\hat{v}} \hat{u} = (\frac{\hat{u} \cdot \hat{v}}{|\hat{v}|^2}) \hat{v}$

Cross Product of Two Vectors: $\vec{u} \times \vec{v} = (|\hat{u}||\hat{v}|sin\theta) \hat{n}$ such that n is a unit vector perpendicular to the plane determined by \vec{u} and \vec{v} .

Determinant Formula for Cross Product of Two Vectors: Suppose $\hat{u} = u_1\hat{i} + u_2\hat{j} + u_3\hat{k}$ and $\hat{v} = v_1\hat{i} + v_2\hat{j} + v_3\hat{k}$. Then $\hat{u} \times \hat{v} = (u_2v_3 - u_3v_2) \ \hat{i} - (u_1v_3 - u_3v_1) \ \hat{j} + (u_1v_2 - u_2v_1) \ \hat{k}$.

Properties of Cross Product:

1)
$$(\overrightarrow{ru}) \times (\overrightarrow{sv}) = (rs)(\overrightarrow{u} \times \overrightarrow{v})$$

2)
$$\overrightarrow{u} \times (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \times \overrightarrow{v} + \overrightarrow{u} \times \overrightarrow{w}$$

3)
$$\overrightarrow{u} \times \overrightarrow{v} = -(\overrightarrow{v} \times \overrightarrow{u})$$

4)
$$(\overrightarrow{v} + \overrightarrow{w}) \times \overrightarrow{u} = \overrightarrow{v} \times \overrightarrow{u} + \overrightarrow{w} \times \overrightarrow{u}$$

5)
$$0 \times \overrightarrow{v} = 0$$

6)
$$\overrightarrow{u} \times (\overrightarrow{v} \times \overrightarrow{w}) = (\overrightarrow{u} \cdot \overrightarrow{w}) \overrightarrow{v} - (\overrightarrow{u} \cdot \overrightarrow{v}) \overrightarrow{w}$$

7) Two vectors are parallel if
$$\overrightarrow{u} \times \overrightarrow{v} = 0$$