

MECHANICS OF MATERIALS: NORMAL AND SHEAR STRESS

Normal Stress Caused by Bending:

• Recall shear and moment calculation and graphing techniques:

• The Neutral Axis is the axis at which a member in bending experiences no normal stress:

• When bending, we observe how stress varies as a point moves away from the Neutral Axis:

$$\varepsilon = -\frac{y}{c} \cdot \varepsilon_{max}$$
 such that $\sigma_x = E\left(-\frac{y}{c}\right) \cdot \varepsilon_{max}$ and $\sigma_x = -\frac{y}{c} \cdot \sigma_{max}$

$$I = \int y^2 dA = \frac{Mc}{\sigma_{max}} \text{ or } \sigma_x = -\frac{My}{l} \text{ for any } y \text{ be}_b$$

The negative sign is necessary because for a positive y point, the beam experiences compression

• The Parallel Axis Theorem is often used for objects that are not strictly rectangular or

circular, but rather comprised of several shapes:

$$I_i = I' + A_i d_i^2$$

Rectangle	$I_{rectangle} = \frac{1}{12}bh^3$
Circle	$I_{circle} = rac{1}{4}\pi R^4$
Triangle	$I_{triangle} = \frac{1}{36}bh^3$
Semi-circle	$I_{semicircle} = \frac{1}{8}\pi R^4$
b is in the direct	ion parallel (II) to the NA
h is in the direction perpendicular (1) to the NA	

• Unsymmetrical bending due to moments at angles requires the moment vector to be decomposed:

Shear Stress Caused by Shear Force:

There are two directions in which shear force acts: longitudinal (along the length of the beam) and transverse (on

cut plane)

р

- 1. Horizontal shear (longitudinal): $\Delta H = \frac{VQ}{I} \Delta x$
- 2. Transverse shear : $\tau_{avg} = \frac{VQ}{It} \Delta x$ and $\tau_{max} = 1.5 \cdot \frac{V_{max}}{A}$

Shear flow (shear force per unit length): $q = \frac{\Delta H}{\Delta x} = \frac{VQ}{I}$

ÿ	Distance from NA to the
	centroid of A
	Area above the point or above
Α	the Shear Plane (opposite side
	of NA)
Ι	Moment of inertia of entire
	object (independent of A or \bar{y})
V	Transverse force applied
t	Thickness of the object at the
	point observed or Shear Plane

For more information, visit a <u>tutor</u>. All appointments are available in-person at the Student Success Center, located in the Library, or online. Adapted from Hibbeler, R.C. (2014). *Mechanics of Materials* (9th Edition). Boston, MA: Prentice Hall.