

MECHANICS OF MATERIALS: AXIAL LOADS & TORSION

Axial Loads:

 $\varepsilon = \frac{\delta}{L} = \frac{\sigma}{\tau} = \frac{1}{E}$ $\frac{1}{E} \cdot \frac{P}{A}$ $\frac{P}{A}$ such that $\delta = \frac{PL}{AE}$ $\frac{PL}{AE}$ for homogenous and uniform cross $-$ sections

$$
\delta = \int_{0}^{L_o} \frac{P(x)}{A(x) \cdot E(x)} dx = \sum_{i=0}^{n} \frac{P_i L_i}{A_i E_i}
$$

- Superposition allows the problem to be worked by evaluating how much a body *would* move if it could. Then, the reaction force must be equal and opposite.
	- 1. Remove one wall support
	- 2. Break the body into sections where P , L , A , or E changes
	- 3. $\;$ Find δ for each section and the resulting $\delta_{total}^{}=\;$ $\sum\delta_i^{}$ (careful to mind signs)
	- 4. $\;$ Find $\delta_{reaction}^{}$ in terms of the reaction force $R_{wall}^{}$
	- 5. Equate the deformations due to the true deflection being 0 ($\delta = 0 = \delta_{no\ wall} + \delta_{reaction}$)
	- 6. Solve for reaction force at the wall, R_{wall} and consequently other reaction forces.
	- 7. Solve for the stress in each section (from step 2), where $P = R_{wall}$ for all sections and A varies.
- Thermal Stress is a result of heating or cooling and is dependent on the material's coefficient of thermal expansion, α (found in tables, measured in °F $^{-1}$ or °C $^{-1}$):

$$
\boldsymbol{\delta}_{_{T}}=\,\boldsymbol{\alpha} L\boldsymbol{\Delta} T\quad\ \boldsymbol{\epsilon}_{_{T}}=\,\boldsymbol{\alpha}\boldsymbol{\Delta} T
$$

Stress concentrations arise when stress flow is abruptly "pinched" around a corner. Two common instances are holes and fillets in a flat plate. This is the reason sidewalk corners crack first.

Given D, d, and r/d, K can be found using provided charts. K tells the ratio of the maximum stress observed to the average.

Torsion:

● Twisting engenders a shear stress:

● Angle of twist measures deformation and is dependent on the length and diameter. Shear strain is independent of both diameter and length:

$$
\gamma_{max} = \frac{c\phi}{L} = \frac{\tau_{max}}{G} = \frac{TC}{JG}
$$
 and $\phi = \frac{TL}{JG}$

● Power transmissions can be analyzed to understand the minimum shaft diameter for a given power requirement (or max power for given shaft diameter):

$$
P = t \cdot \omega = 2\pi \text{ such that } T = \frac{P}{2\pi f} = \frac{\tau_{\text{max}} J}{c}
$$

$$
\frac{J}{C} = \frac{P}{2\pi f} \cdot \frac{1}{\tau_{\text{max}}}
$$

$$
J = \frac{TL}{G\phi} = \frac{P}{2\pi f} \cdot \frac{L}{G\phi}
$$

For more information, visit a [tutor.](https://www.uah.edu/ssc/tutoring/academic-coaching) All appointments are available in-person at the Student Success Center, located in the Library, or online. Adapted from Hibbeler, R.C. (2014). *Mechanics of Materials* (9 th Edition)*.* Boston, MA: Prentice