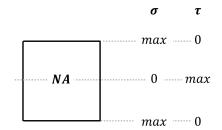
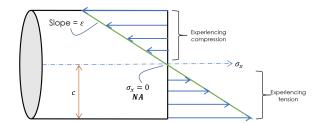


MECHANICS OF MATERIALS: NORMAL & SHEAR STRESS


Normal Stress Caused by Bending:


• Recall shear and moment calculation and graphing techniques:

Load (w)	Shear (V)	Mon (I
0	0	0
– w (constant)	wx (linear)	<i>w</i> (para
— <i>wx</i> (linear)	wx^2 (parabolic)	W
$-wx^2$ (parabolic)	wx ³	W

• The Neutral Axis is the axis at which a member in bending

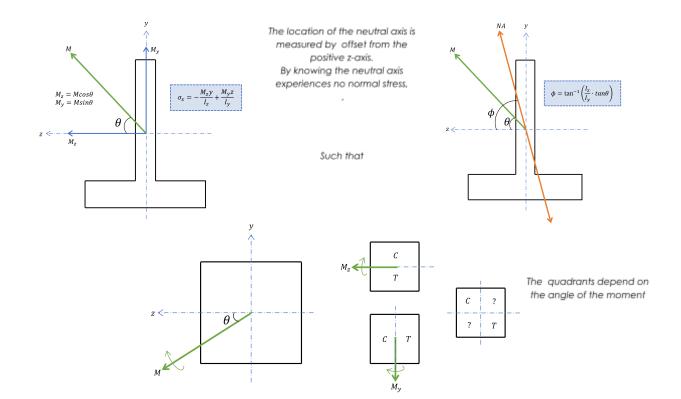
experiences no normal stress:

• When bending, we observe how stress varies as a point moves away from the Neutral Axis.

$$\varepsilon = -\frac{y}{c} \cdot \varepsilon_{max}$$
 such that $\sigma_x = E\left(-\frac{y}{c}\right) \cdot \varepsilon_{max}$ and $\sigma_x = -\frac{y}{c} \cdot \sigma_{max}$

$$I = \int y^2 dA = \frac{Mc}{\sigma_{max}}$$
 or $\sigma_x = -\frac{My}{I}$ for

any y The negative sign is necessary because for a positive point, the beam experiences compression

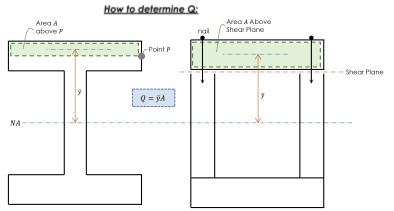

Rectangle	$I_{rectangle} = \frac{1}{12}bh^3$
Circle	$I_{circle} = \frac{1}{4}\pi R^4$
Triangle	$I_{triangle} = \frac{1}{36}bh^3$

• The Parallel Axis Theorem is often used for objects that are not strictly rectangular or circular, but rather are comprised of several shapes:

Semi-circle	$I_{semicircle} = \frac{1}{8}\pi R^4$	
b is in the direction parallel () to the NA		
h is in the direction perpendicular (1) to the NA		

$$I_{i} = I' + A_{i}d_{i}^{2}$$

• Unsymmetrical bending due to moments at angles requires the moment vector be decomposed:



Shear Stress Caused By Shear Force:

\overline{y}	Distance from NA to the centro of A
Α	Area above the point or above Shear Plane (opposite side of N

For more information, visit a <u>tutor</u>. All appointments are available in-person at the Student Success Center, located in the Library, or online. Adapted from Hibbeler, R.C. (2014). *Mechanics of Materials* (9th Edition). Boston, MA: Prentice Hall.

- There are two directions in which shear force acts: longitudinal (along the length of the beam) and transverse (on cut plane)
 - 1. Horizontal shear (longitudinal): $\Delta H = \frac{VQ}{l} \Delta x$
 - 2. Transverse shear: $\tau_{avg} = \frac{VQ}{It}$ and $\tau_{max} = 1.5 \cdot \frac{V_{max}}{A}$
- Shear flow (shear force per unit length): $q = \frac{\Delta H}{\Delta x} = \frac{VQ}{I}$

Ι	Moment of inertia of entire objection (independent of A or \overline{y})
V	Transverse force applied
t	Thickness of the object at the point observed or Shear Plane