

THERMODYNAMICS I: PHASES

Phases:

1	Compressed (sub-cooled) liquid
2	Saturated liquid line
3	Two-phase mixture
4	Critical point
5	Superheated vapor
6	Saturated vapor line

• Quality of a two-phase mixture is the ratio of vapor to total mass, with $0 \le x \le 1$ such that x = 0 indicates the mixture is 0% vapor and x = 1 indicates 100% vapor

$$x = \frac{m_{vapor}}{m_{vapor} + m_{liquid}} = \frac{m_{vapor}}{m_{total}}$$

 Specific volume of a two-phase mixture is dependent on the quality. The higher the quality at a given temperature or pressure, the higher the specific volume:

$$v = \frac{v_{_{sat.\; liquid}} + v_{_{sat.\; vapor}}}{m_{_{liquid}} + m_{_{vapor}}} = \frac{m_{_{liquid}}}{m_{_{total}}} \cdot v_{_{liquid}} + \frac{m_{_{vapor}}}{m_{_{total}}} \cdot v_{_{vapor}}$$

Substituting subscript "g" for vapor (gas) and "f" for liquid (fluid) and rearranging:

$$v = (1 - x)v_f + xv_g = v_f + x(v_g - v_f)$$

From this formula, the meaning of quality can be seen on T-v and P-v diagrams:

This formula can be repeated for internal energy, entropy, and enthalpy of a two-phase:

Property	Formula
Specific volume	$v = v_f + x(v_g - v_f)$
Internal energy	$u = u_f + x (u_g - u_f)$
Entropy	$s = s_f + x(s_g - s_f)$
Enthalpy	$h = h_f + x(h_g - h_f)$