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Abstract:  Many important systems, both natural and artificial, may be classified as complex, and the study of complex 
systems is ongoing.  Such systems have special defining characteristics, including sensitivity to initial conditions, 
emergent behavior, and composition of components.  Complex systems are increasingly prevalent as the subject of 
modeling efforts.  There are at least two reasons for this; first, the systems that are of the greatest practical interest and 
thus most likely to be modeled tend to be complex, and second, because complex systems resist closed form analysis 
modeling is often the only way to study them.  Unfortunately, the special characteristics of complex systems lead to 
additional challenges in both effectively modeling them and in validating the models.  This paper, which takes the form 
of an introductory tutorial and literature survey, first defines complex systems in terms of their key characteristics and 
describes how validation risk applies to models of them.  It then identifies a series of modeling and validation 
challenges that follow from the defining characteristics and suggests mitigation approaches for those challenges. 

1. Introduction 
“… our best equations for the weather differ from our 
best computer models based on those equations, and both 
of those systems differ from the real thing …”  [1] 

“… complexity lies somewhere between order and 
chaos.”  [2] 

Complex systems, where “complex” is meant in the sense 
of complexity theory as opposed to simply a synonym for 
“complicated”, are with increasing frequency the subject 
of modeling efforts.  Among the reasons for this, two 
stand out.  First, the systems of the greatest practical 
interest, and thus those most likely to be worth the effort 
and expense of being modeled, tend to be complex.  
Second, as a result of their special characteristics, 
complex systems generally resist closed form 
mathematical analysis, and so modeling is often the best 
or even the only way to study and experiment with them. 

Complex systems have a number of special defining 
characteristics, including sensitivity to initial conditions, 
emergent behavior, and composition of components.  
Unfortunately for those involved in modeling complex 
systems, these special characteristics of complex systems 
lead to additional challenges beyond those encountered 
with non-complex systems in both modeling them 
accurately and effectively and in reliably and completely 
validating the models. 

This paper, which is meant as an introductory tutorial and 
brief literature survey, has four main sections.  The first 
describes complex systems and lists their defining 
characteristics, and motivates the interest in validating 

models of complex systems by discussing validation risk.  
Then, each of the following sections discusses one of 
three selected defining characteristics of complex systems 
(sensitivity to initial conditions, emergent behavior, and 
composition of components), explaining why the 
characteristic in question makes modeling and validation 
more difficult and offering some approaches to dealing 
with and mitigating the difficulties. 

2. Complex systems 
Complex systems were recognized as qualitatively 
distinct from non-complex systems at least as early as 
1984, with the founding of the Santa Fe Institute, a 
research institute devoted to complexity theory [3].  Since 
then, a body of specialized knowledge has been 
developed on the subject, driven by both theoretical and 
experimental investigations [4]. 

2.1 Definition of complex systems 

A range of definitions of complex system are available.  
Although they are far from as reassuringly consistent or 
precise as that of, say, an equivalence relation (e.g., see 
[5]), they are nevertheless informative. 

 “A system comprised of a (usually large) number of 
(usually strongly) interacting entities, processes, or 
agents, the understanding of which requires the 
development, or the use of, new scientific tools, nonlinear 
models, out-of equilibrium descriptions and computer 
simulations.”  [6]1

                                                 
1 Quoted from [6], where it is attributed to [26]. 



 

 

 
Figure 1.  Examples of complex systems: 
air traffic control, weather, and the stock market . 

“A complex system is one whose evolution is very 
sensitive to initial conditions or to small perturbations, 
one in which the number of independent interacting 
components is large, or one in which there are multiple 
pathways by which the system can evolve.”  [7] 

Both natural and artificial systems satisfy these 
definitions; examples of systems that are considered to be 
complex are illustrated in Figure 1.2

                                                 

                                                

2 Image acknowledgements for Figure 1:  M. Peteron, 
GNU Free Documentation License, Wikipedia Commons 
(Air traffic control); National Aeronautics and Aerospace 
Administration, Public domain, Wikipedia Commons 
(Weather); National Institute for Standards and 
Technology, Public domain, Wikipedia Commons (Stock 
market). 

There is general consensus that certain defining 
characteristics or properties are associated with complex 
systems.  These characteristics are individually arguable, 
in that not every complex system necessarily exhibits 
every one of these characteristics, but they are 
collectively definitive; most complex systems will exhibit 
most of these characteristics.  Taken together, they define 
the class of complex systems and serve to distinguish 
them from non-complex systems.  A list of the defining 
characteristics with brief descriptions follows; the first 
three are described in detail in the following sections, 
whereas the others are briefly described here:3

1. Sensitivity to initial conditions.  Description to 
follow. 

2. Emergent behavior.  Description to follow. 
3. Composition of components.  Description to follow. 
4. Uncertain boundaries.  Determining the boundary 

between a complex system and the environment in 
which it is situated and with which it interacts can be 
difficult. 

5. Nesting.  Components of a complex system may 
themselves be complex systems. 

6. State memory.  Future states of a complex system 
often depend on past states in ways that are difficult 
to understand or model. 

7. Non-linear relationships.  Relationships between 
components of a complex system may be non-linear, 
which means a small cause may have a large effect. 

8. Feedback loops.  Negative (damping) and positive 
(amplifying) feedback loops exist between elements 
of complex system. 

2.2 Validation risk in models of complex systems 

Important systems, complex systems, and modeled 
systems overlap to a great extent.  Systems that are 
important to their users, for reasons of safety, economics, 
or ubiquity, are often complex; the reverse is also true.  
For example, financial markets are important to those 
who participate in them, whether voluntarily or 
involuntarily, because of their potential impact on the 
participants’ quality of life and long-term security, and 
they exhibit all of defining characteristics listed earlier.  
Similarly, systems that are important are also often 
modeled, because their importance makes them more 
likely to be worth the effort and expense of being 
modeled; and again the reverse is also true.  Finally, 
complex systems are often modeled, and once more the 
reverse is true.  Because of their inherent structure, 
complex systems are often difficult to study using closed 
form mathematical analysis [2].  Consequently, modeling 
is often the best or even the only way to study or 
experiment with them. 

 
3 An overlapping but somewhat different list is given in 
[15]; that list includes adaptivness and self-organization. 
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Figure 2.  Types of validation errors and risk. 

Models are subject to validation risk.  The general 
concept of validation risk is that validation that is 
improperly or incompletely performed can result in risk to 
the developers and/or the users of the model.  This 
general notion has been refined into specific types of 
validation error and the type of validation risk that results 
from each.  The validation errors are known as Type I, 
Type II, and Type III, and are defined in a manner that 
closely parallels the like-named error types in statistical 
hypothesis testing.  Figure 2 summarizes these error 
types.4

Whenever a model is used validation risk exists, and for a 
model of an important system, that risk is proportional to 
the importance of the system and to the model’s intended 
use.  Obviously, a Type II validation error clearly has less 
potential consequences for a model of ant behavior being 
used for a video game than a model of metal fatigue being 
used to design the airframe of an airliner.  Decisions made 
about important system using models can have major 
impact.  As an example, consider the 2007 financial crisis 
in the United States.  Some financial analysis have argued 
that that crisis was in significant part triggered by a 
financial model, namely the famous (or infamous) 
Gaussian copula, which is a model of the prices of 
collateralized debt obligations: 

Pr[TA < 1, TB < 1] = Φ2(Φ-1(FA(1)), Φ-1(FB(1)), γ)  [8] 

                                                 
4 The figure is from [17]; it is adapted from a flowchart 
that shows how the different types of errors might arise 
found in [14].  Definitions of Type I and Type II 
validation errors analogous to the statistical errors of the 
same name appear in [27] and in subsequent editions of 
this source, e.g., [11]. 

The mathematical and notational details of this model 
need not concern us here.  Conceptually, the bounds of 
validity of this widely-used model were not fully 
understood by its users.  The model was based on the 
assumption that the price of a credit default swap was 
correlated with, and thus could be used to predict, the 
price of mortgage backed securities.  Because the model 
was easy to use and compute, it was soon employed by a 
large portion of mortgage issuers, rating agencies, and 
financial investors.  In fact, the model was ultimately 
invalid and its use constituted a Type II validation error.  
The result of that error is well known: 

“Then the model fell apart.  … financial markets began 
behaving in ways that users of [the] formula hadn't 
expected.  … ruptures in the financial system's foundation 
swallowed up trillions of dollars and put the survival of 
the global banking system in serious peril.”  [8] 

The significant overlap of important systems, complex 
systems, and modeled systems means that our models are 
often of systems that are both important and complex; 
their importance magnifies validation risk, and their 
complexity complicates validation.  Given the validation 
risk associated with models of important and complex 
systems, it is prudent to expend validation effort 
proportional to the risk, and to adapt or develop validation 
methods suitable for complex systems. 
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Figure 3.  Sensitivity to initial conditions; system state diverges over time. 

3. Sensitivity to initial conditions 
 “This is only true when small variations in the initial 
circumstances produce only small variations in the final 
state of the system.  In a great many physical phenomena 
this condition is satisfied; but there are other cases in 
which small initial variation may produce a very great 
change in the final state of the system, as when the 
displacement of the ‘points’ causes a railway train to run 
into another instead of keeping its proper course.”  [9] 

 “Small differences can build upon themselves and create 
large differences, making precise prediction difficult.” [2] 

The first of the three defining characteristics of complex 
systems to be examined for its effect on modeling and 
validation is sensitivity to initial conditions.  Here the 
phrase “initial conditions” refers, of course, to either the 
starting state of the system (e.g., a rocket motor at 
ignition), or if the system has an effectively continuous 
existence (e.g., the weather), the state of the system at the 
beginning of the time period being studied or modeled.  
The state evolution of complex systems can be highly 
sensitive to its initial conditions, with the result that small 
differences in initial state can become magnified over 
time into large differences in future state [1].  Figure 3 
illustrates this; in the figure, the horizontal axis represents 
time, advancing from left to right, and the vertical axis 
represents system state, notionally simplified to a single 
variable.  States that are only slightly different at some 
initial time t0 can evolve away from each other, becoming 
arbitrarily different at some future time t1. 

Models of complex systems, if they accurately represent 
the system’s characteristics, can be similarly sensitive to 
initial conditions.  From two model starting states that are 
quite similar, the execution of a model of a complex 
system can produce widely divergent end states. 

3.1 Modeling 

Sensitivity to initial conditions can introduce modeling 
challenges in these ways: 
1. Implementation side effects.  Technical aspects of the 

model that are purely implementation details and do 
not correspond to any aspect of the simuland5 can 
have significant side effects that influence, or even 
overwhelm, the results.  A well-known example is 
the effect of the numerical precision of the 
implementation language on numerical integration of 
differential equations in physical models [10].6  In 
stochastic models that rely on random number 
generators, the seed and cycle length of the random 
number stream can, through the magnifying effect of 
sensitivity, significantly affect the model’s results 
[11]. 

2. Sensitivity consistency.  If a complex system is 
sensitive to initial conditions, the modeler may seek 
similarly sensitivity in a model of that system.  
However, given the nature of the sensitivity, it can be 
quite difficult accurately to match the model’s 
sensitivity to that of its simuland.  Even if both the 
complex system and a model of it are sensitive, small 
differences between simuland sensitivity and model 
sensitivity can lead to large differences in outcomes. 

                                                 
5 The simuland is the system, phenomenon, or process 
that is the subject of a model, i.e., the modeled system 
[17]. 
6 [10] provides an example; fourth-order Runge-Kutta 
integration with a fixed time step used to calculate an 
orbit in a two-body (sun and planet) gravitational system 
completely breaks down in the vicinity of the sun due to 
numerical precision issues, with the result that the 
simulated planet incorrectly “flies off completely into 
space”. 



3. Input imprecision.  Because sensitivity magnifies 
small differences in initial conditions, a small 
difference between the simuland’s true initial state 
and the values of the model input data describing that 
state can again lead to large differences in outcomes.  
Consider, for example, a weather model that uses a 
three-dimensional array of air temperature, pressure, 
and humidity values to define the initial state of the 
atmosphere.  Small errors in measuring those values 
can be magnified, as the model executes, into large 
discrepancies between the model’s prediction and the 
actual weather.  The input data precision needed by 
the model to accurately predict the simuland’s future 
may exceed that obtainable due to limits in 
instrumentation accuracy or observation availability.  
This observational uncertainty is one reason that the 
useful predictive power of current weather models is 
currently limited to a few days, and the maximum 
achievable limit, even with perfect models, is 
considered to be “about two weeks” [12]. 

These methods can mitigate the modeling challenges 
associated with sensitivity to initial conditions: 
1. Selective abstraction.  During conceptual modeling, 

identify simuland features and state variables that are 
not required for the model to satisfy its intended 
purposes.  Omit them in the implemented model, 
thereby eliminating them as possible sources of 
sensitivity. 

2. Ensemble forecasting.  The core idea of ensemble 
forecasting is to execute multiple runs of a model, 
each of which was initialized with slightly different 
initial states, and then develop a prediction based on 
the multiple results.7  The differences in the inputs 
are intended to reflect the uncertainty in the 
knowledge of the initial state.  The multiple results 
may be aggregated or averaged, and the variation and 
divergences between them analyzed; the details of 
aggregation and analysis depend on the application, 
but statistical methods are often employed.  In some 
forms and contexts this is a familiar idea; modelers 
using a discrete event simulation to study a queueing 
system often conduct multiple trials, each beginning 
with a different random number seed.  In the case of 
weather models, different values for the initial 
conditions of the atmosphere may be used, with the 
differences generated based on the noise or 
uncertainty in the observations upon which the input 
is based [1].  The uncertainty of the forecast may be 
estimated based the variation in the different 
forecasts generated. 

                                                 
7 In addition to multiple runs of a single model, ensemble 
forecasting may also refer to an aggregating or merging of 
the results of multiple models.  This approach is used to 
predict hurricane tracks. 

3.2 Validation 

Sensitivity to initial conditions can introduce validation 
challenges in these ways: 
1. Results distributions.  Broad distributions (i.e., large 

variance) in both simuland observations and model 
results can reduce the power of statistical 
comparisons of the two [13]. 

2. Sensitivity analysis.  The potential for widely 
divergent outcomes from closely similar initial 
conditions can complicate conventional sensitivity 
analysis by requiring more closely spaced sampling 
of the response surface to capture the response 
variation. 

3. Input imprecision.  Matching model initialization 
data to simuland observation data precisely enough to 
compare simulation outcome and model results can 
be problematic. 

These methods can mitigate the validation challenges 
associated with sensitivity to initial conditions: 
1. Increased trials.  Increasing the number of trials (i.e., 

executions of the model) can regain some statistical 
power through larger sample sizes. 

2. Sensitivity analysis.  Sensitivity analysis can be used 
as a validation method by statistically comparing the 
magnitude and variability in the simuland 
observations to the magnitude and variability in the 
model results, in effect using sensitivity as a metric 
for validation comparison [14]. 

3. Precision awareness.  Understand the precision 
available in simuland observation data, and based on 
that precision, use an appropriate comparison 
threshold when comparing simuland observations and 
model results.  For example, it is a mistake to expect 
the model to match the simuland within one unit 
when the observations are only accurate to within 
five units. 



 
Figure 4.  Emergent behavior in a natural system; flocking emerges from individual bird actions. 

4. Emergent behavior 
“The behavior of many complex systems emerges from the 
activities of lower-level components.”  [2] 

“Much of the focus of complex systems is how … 
interacting agents can lead to emergent phenomena.  … 
individual, localized behavior aggregates into global 
behavior that is, in some sense, disconnected from its 
origins.”  [2] 

The second of the three defining characteristics of 
complex systems to be examined for its effect on 
modeling and validation is emergent behavior.  Emergent 
behavior is behavior that is not explicitly encoded in the 
agents or components that make up the model; rather, it 
emerges during a simulation from the interaction of 
agents or components with each other and the simulated 
environment [15]. 

An important aspect of emergent behavior is that it is not 
directly predictable or anticipatable from the individual 
agents’ or components’ behaviors, even if they are known 
completely.  Figure 4 illustrates a form of natural 
emergent behavior that exhibits this.8  Emergent behavior 
is, in some intuitive sense, unexpected; it produces 
“surprise” in the observer [2].  There is the possibility of 
multiple levels of emergence, with mesoscale behavior 
that emerges from microscale interactions itself 
contributing to the emergence of even higher level 
macroscale behaviors [2]. 

                                                 
8 Image acknowledgement for Figure 4:  C. A. 
Rasmussen, Public domain, Wikipedia Commons. 

4.1 Modeling 

Emergent behavior can introduce modeling challenges in 
these ways: 
1. Incomplete observations.  Because emergent 

behavior is potentially unpredictable, available 
observations of simuland may not include all possible 
simuland emergent behavior.  Indeed, the modeler 
may not even be aware of some potential simuland 
emergent behaviors. 

2. Indirect representation.  Because emergent behavior 
is not, in general, predictable from the individual 
behavior of agents or components within the complex 
system, those aspects or characteristics of it that 
produce emergent behavior can be difficult to 
identify and include in the model. 

3. Overabstraction risk.  Because emergent behavior is 
produced indirectly from potentially non-obvious 
aspects of simuland, modeler may unintentionally 
abstract away those aspects, eliminating the 
possibility of the model generating interesting or 
important emergent behavior. 

These methods can mitigate the modeling challenges 
associated with emergent behavior: 
1. Additional observations.  Increasing the number or 

duration of simuland observations, and broadening 
the range of conditions under which the simuland is 
observed, can increase the likelihood of observing 
and detecting the full repertoire of emergent 
behaviors. 

2. Conceptual modeling focus.  When developing the 
conceptual model of a complex system, give explicit 
attention to the inclusion of emergent behaviors, or 
aspects of the complex system that may give rise to 
emergent behaviors (such as inter-agent interactions). 



4.2 Validation 

Emergent behavior can introduce validation challenges in 
these ways: 
1. Incomplete observations.  Emergent behavior is, by 

its nature, difficult to predict, observe, measure in the 
simuland; this was already noted as a modeling 
challenge.  It is also a validation challenge, as some 
emergent behavior observed in the model results may 
not have been observed in the simuland, thus leaving 
gaps in the data for use in validating the model’s 
behavior. 

2. Incomplete results.  Conversely, emergent behavior 
observed in the simuland can be similarly difficult to 
generate in the model results.  Of course, if the 
behavior is not in the model results, it can not be 
validated beyond noting that it is missing. 

3. Face validation unreliability.  Because of emergent 
behavior is unpredictable, face validation based on 
subject matter experts is less reliable.  The experts 
may overestimate or underestimate the likelihood of 
occurrence of emergent behavior, or they may have 
little direct knowledge of it.9 

4. Test case uncertainty.  Because emergent behavior is 
not directly predictable, designing model validation 
test cases (trials) which will generate specific 
emergent behaviors for validation can be difficult. 

These methods can mitigate the validation challenges 
associated with emergent behavior: 
1. Additional observations.  Increasing the number or 

duration of simuland observations, and broadening 
the range of conditions under which the simuland is 
observed, increases the likelihood of acquiring the 
data needed to validate emergent behavior. 

2. Structured face validation.  To overcome deficiencies 
in the knowledge of any particular subject matter 
expert, use teams of experts and conduct organized 
face validation assessments.  The latter may be based 
pre-planned validation scenarios designed to cover 
the full range of simuland behaviors [16] [17] and 
employ Delphi methods, wherein panels of experts 
make forecasts and examine the model’s results over 
multiple rounds, eventually converging on a 
consensus assessment of validity [18]. 

3. Scenario space search.  Generate validation test 
cases automatically via heuristic search in scenario 
space, i.e., generating new test cases based on 

                                                 
9 Experts often underestimate the probability of an 
unlikely event, implicitly assuming a normal probability 
distribution when a “fatter tailed” distribution would be 
more appropriate.  Examples of such distributions and 
their asserted applications include power laws for city 
sizes [28] and deaths in warfare [29], and Lévy stable 
laws for stock market price changes [12]. 

previous trials that elicit some emergent behavior; 
this method requires metrics for emergent aspects of 
complex systems. 
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Figure 5.  Composition of components; a model composed of three submodels. 

5. Composition of components 
 “We would, however, like to make a distinction between 
complicated worlds and complex ones.  In a complicated 
world, the various elements that make up the system 
maintain a degree of independence from one another.  …  
Complexity arises when the dependencies among the 
elements become important.”  [2] 

The third of the three defining characteristics of complex 
systems to be examined for its effect on modeling and 
validation is composition of components.  Complex 
systems are, by definition, composed of interacting 
components.10  Similarly, models of complex systems are 
often composed of submodels, and those submodels are 
most typically organized in a structure that reflects the 
structure of the complex system itself.  For example, a 
spacecraft model may be composed of power system and 
thermal submodels, with the thermal submodel providing 
input to power system model to predict power loading. 

5.1 Modeling 

Composition of components can introduce modeling 
challenges in these ways: 

                                                 
                                                

10  As discussed earlier, interactions between those 
components can lead to emergent behavior. 

1. Interface compliance.  The existence of multiple 
submodels, and thus the need for interfaces between 
them, adds new opportunities for modeling errors, 
such as mismatches in data types, measurement units, 
and execution sequence.11 

2. Architecture selection.  The appropriate software 
architecture framework for organizing and 
connecting the component models (such as hierarchy, 
blackboard, or agent-based) may not be obvious, and 
it may have unintended effects on the model results 
[19]. 

3. Model correlation.  Different component models may 
have differences (such as underlying assumptions, 
representational granularity, or level of fidelity) that 
negatively affect the overall model’s results [20]. 

These methods can mitigate the modeling challenges 
associated with composition of components: 
1. Interface analysis.  Specifically examine submodel-

to-submodel interfaces to determine if interface 
structures are consistent and accurate [14]. 

 
11 Arguably, the entire subject of simulation 
interoperability is embedded in this modeling challenge.  
Clearly, this is no small matter. 



2. Known problem review.  Review available lists of 
known interoperability problems typically 
encountered to see if they apply [21]. 

3. Architecture reuse.  Reuse and revise known model 
architectures when appropriate, and exploit available 
architecture-based systems engineering processes 
(e.g., the Distributed Simulation Engineering and 
Execution Process [22]). 

4. Conceptual model verification.  Compare component 
models’ conceptual models to detect model 
correlation errors. 

5.2 Validation 

Composition of components can introduce validation 
challenges in these ways: 
1. Weakest link validity.  The overall validity of a model 

assembled as a composition of component models 
may be limited by the lowest fidelity component 
model.  For example, a high fidelity ground vehicle 
movement model composed with a low fidelity 
terrain model will likely not produce accurate 
movement speeds. 

2. Error location ambiguity.  Errors in model results 
detected during model validation may be difficult to 
associate with correct component model; indeed, they 
may result from an interface error, rather than one of 
the component models. 

3. Statistical method unsuitability.  The statistical 
methods used most often in validation typically 
compare single variables, e.g., the Student t test 
compares the means of two populations, or the Mann-
Whitney U test determines whether two independent 
samples of observations come from the same 
distribution.  Models of complex systems have states 
represented by multiple non-linear variables related 
non-linearly, requiring the of use multivariate 
methods that accommodate non-linear effects [14]. 

4. Noncomposability of validity.  In a model assembled 
as a composition of components, i.e., from 
submodels, the submodels are typically validated 
individually.  Unfortunately, submodel validity does 
not ensure composite model validity; even if the 
submodels are separately valid, the composite models 
may not be.  It has been mathematically proven that 
for non-trivial models separately valid component 
models can not be assumed to be valid when 
composed [23]. 

These methods can mitigate the validation challenges 
associated with composition of components: 
1. Uncertainty estimation.  Determine or estimate the 

possible error range for key model results variables 
for each component model.  Then propagate and 
accumulate those errors to find the overall error range 
for the same variables for the composite model [24].  
If the overall error is too large, revise the model. 

2. Non-linear multivariate statistics.  Apply 
multivariate statistical methods to validation of non-
complex systems models.  For example, Hotelling T2-
statistic, which is a generalization of Student’s t 
statistic that is used in multivariate hypothesis 
testing, can be used for constructing ellipsoidal joint 
confidence intervals in validation [25]. 

3. Composition validation.  During validation of a 
composite model, validate both the component 
models individually and overall composite model.  
This is directly analogous to conventional unit and 
system testing in software engineering practice. 

6. Summary 
Complex systems, which are increasingly often the 
subject of modeling efforts, have certain defining 
characteristics that make them more difficult to model and 
make models of them more difficult to validate.  The 
specific modeling and validation challenges can be 
associated with the complex system characteristic that 
causes them.  Although these challenges can be 
problematic, and in some cases are in principle impossible 
to overcome entirely, they can often be mitigated through 
informed application of appropriate methods. 
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