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ABSTRACT
_

The temperature of the solar atmosphere counterintuitively increases from a few thousand Kelvin to well over one million Kelvin while moving away from the photosphere to the corona. This currently unexplained phenomenon is known as the Coronal Heating Problem. Since its discovery, multiple theories have been proposed to explain the strangely drastic heating.
One of them is the nanoflare theory, and it was proposed on the basis of observed solar flares. Nanoflares are small-scale, impulsive heating events thought to be happening constantly in the corona. Here, we examine nanoflares as a possible heating mechanism in the bright EUV and X-ray structures of the corona, known as active regions (AR). We utilize the
Enthalpy-Based Thermal Evolution of Loops code to simulate the emission of the coronal loops within AR NOAA 12846. The results are tested for varying heating parameters of the nanoflare events. Then, we compare the simulated results with the observed emissions using different AIA and XRT filters to determine which parameters best align with the data.

e i

GOAL - METHODS RESULTS DISCUSSION

Simulate NOAA 12846 with EBTEL Magnetic skeleton - extrapolation Simulated AIA 94, 131, 171, 211, 355 A; XRT Be-Thin and Al-poly using the e This project: heating events generated randomly at varying values Parker
e Compare simulations with observed data Run EBTEL, store DEM Instruments’ temperature response functions angles and horizontal drive velocity

e Test different values to alter the simulations Create simulated images using stored DEM and loop coordinates from HMI Constant trend in observed/simulated match ratio ‘
e Determine if the instruments we have now are resolving the DEMs they should magnetogram Lower values of V_and ¢ tend to match better

be Compare sims with observations; ratio graphs and frequency distributions Simulated what MaGIXS would have seen of the same AR alo“‘é =
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Figure 3: left - HMI LOS Magnetogram; middle - extrapolated loops over magnetogram; right - 3D skeleton
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